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Coevolution of Role-Based Cooperation
in Multiagent Systems

Chern Han Yong and Risto Miikkulainen

Abstract—In tasks such as pursuit and evasion, multiple agents
need to coordinate their behavior to achieve a common goal. An
interesting question is, how can such behavior be best evolved? A
powerful approach is to control the agents with neural networks,
coevolve them in separate subpopulations, and test them together
in the common task. In this paper, such a method, called Multia-
gent Enforced SubPopulations (Multiagent ESP), is proposed and
demonstrated in a prey-capture task. First, the approach is shown
to be more efficient than evolving a single central controller for all
agents. Second, cooperation is found to be most efficient through
stigmergy, i.e., through role-based responses to the environment,
rather than communication between the agents. Together these re-
sults suggest that role-based cooperation is an effective strategy in
certain multiagent tasks.

Index Terms—Coevolution, communication, cooperation, het-
erogeneous teams, multiagent systems, neuroevolution, prey-cap-
ture task, stigmergy.

I. INTRODUCTION

I N COOPERATIVE multiagent problem solving, several
agents work together to achieve a common goal [29], [64],

[65]. Due to their parallel and distributed nature, multiagent sys-
tems can be more efficient, more robust, and more flexible than
single-agent problem solvers. A central issue with such systems
is how cooperation can be best established. First, should the
agents be implemented as a diverse set of autonomous actors,
or should they be coordinated by a central controller? Second,
if the agents are autonomous, is communication necessary for
them to cooperate effectively in the task?

In this paper, these issues are addressed from the machine
learning perspective: a team of neural networks is evolved using
genetic algorithms to solve the cooperative problem of prey
capture. More specifically, the Enforced SubPopulations (ESP)
method of neuroevolution [15], [16], which has proven effective
in single -agent reinforcement learning tasks, is first extended
to multiagent evolution, in a method named Multiagent ESP.
This method is then evaluated in a task where a team of sev-
eral predators must cooperate to capture a fast-moving prey. The
main contribution is to show how different ways of encoding,
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evolving, and coordinating a team of agents affects performance
in the task.

Two hypotheses are tested. The first one is that a coevolu-
tionary approach (using Multiagent ESP), where autonomous
neural networks are evolved cooperatively to each control a
single predator of the team, outperforms a central-controller ap-
proach, where a single neural network is evolved (using ESP) to
control the entire team. It turns out that niching in coevolution,
which is especially strong in ESP [15], [16], extends naturally
to multiagent evolution, making Multiagent ESP a powerful ap-
proach. Instead of searching the entire space of solutions, co-
evolution makes it possible to identify a set of simpler subtasks,
and optimizing each team member separately and in parallel for
one such subtask.

The second hypothesis is that (when allowed by the task) the
most efficient way to establish coordination in such teams is
through stigmergy [19], [26]. That is, the agents do not commu-
nicate with each other directly, but instead observe each others’
effects on the environment, such as the changes in the prey’s lo-
cation caused by the teammates’ movement. In fact, it turns out
that even when a primitive form of communication is available
(where each team member broadcasts its location to its team-
mates), communicating teams consistently perform worse than
teams that do not. Each agent has evolved to perform its role
reliably, and the task is solved through the stigmergic coordi-
nation of these roles. Communication is unnecessary and only
complicates the task.

The paper will begin with a brief review of prior work in
cooperative coevolution, ESP, agent communication, and the
prey-capture task. The Multiagent ESP method and its imple-
mentation in the prey-capture task is then described, followed
by an experimental evaluation of the hypotheses and an experi-
mental analysis of the results. A discussion of future prospects
of this approach concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, the approach to testing the two main
hypotheses is motivated by prior work. The cooperative coevo-
lution technique in general, and the ESP method in particular,
matches the goal of producing effective cooperative behavior.
Coordination based on stigmergy is a potentially powerful
alternative to coordination based on communication, and the
prey-capture tasks is a suitable platform for studying it.

A. Cooperative Coevolution

Coevolution in evolutionary computation means maintaining
and evolving multiple individuals, either in a single population
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or in multiple populations, so that their fitness evaluations in-
teract. The interactions may be competitive or cooperative or
both. In competitive coevolution, the individuals have adver-
sarial roles in that one agent’s loss is another’s gain [34], [45]. In
cooperative coevolution the agents share the rewards and penal-
ties of successes and failures [41], [63]. Cooperative coevolu-
tion is most effective when the solution can be naturally modu-
larized into components that interact, or cooperate, to solve the
problem. Each component can then be evolved in its own popu-
lation, and each population contributes its best individual to the
solution.

For example, Haynes and Sen [22]–[24] explored various
ways of encoding, controlling, and evolving predators that
behave cooperatively in the prey-capture task. In the first of
these studies [22], Genetic Programming was used to evolve a
population of strategies, where each individual was a program
that represented the strategies of all predators in the team. The
predators were thus said to be homogeneous, since they all
shared the same behavioral strategy. In follow-up studies [23],
[24], they developed heterogeneous predators: each chromo-
some in the population was composed of programs, each one
representing the behavioral strategy of one of the predators
in the team. Haynes and Sen reported that the heterogeneous
predators were able to perform better than the homogeneous
ones.

In contrast to the advantage found for heterogeneous teams in
the above studies, Luke [30] observed that heterogeneous teams
could not outperform homogeneous teams evolved using Ge-
netic Programming in the soccer softbot domain. However, he
conjectured that, given sufficient time, the heterogeneous ap-
proach would have evolved better strategies. Such an extension
was not practical in his domain, where each evaluation cycle
took between 20 seconds and one minute. Quinn et al. [42] and
Baldassarre et al. [3] studied such teams further by evolving
neural networks to control teams of homogeneous robots. They
found that role allocations would emerge in collective behav-
iors such as formation movement and flocking. Bryant and Mi-
ikkulainen [7] further showed that homogeneous teams can re-
organize their role allocations dynamically as task requirements
change. However, when all agents must be capable of all behav-
iors, it is difficult to generate sufficiently diverse behaviors. Het-
erogeneous teams therefore promise to be more general, scaling
up to a wider variety of behaviors.

Balch [2] demonstrated an important principle in learning di-
verse behaviors in heterogeneous teams, by studying the diver-
sity of robot teams developed through reinforcement learning.
He found that when the reinforcement was local, i.e., applied
separately to each agent, the agents within the team learned
identical behaviors. Global reinforcement shared by all agents,
on the other hand, produced teams with heterogeneous behavior.
This result provides a useful guideline for evolving cooperating
agents: rewarding the whole team for good behavior privileges
cooperation even when some agents do not contribute as much
as others, whereas rewarding individuals induces more competi-
tive behaviors because each individual tries to maximize its own
reward at the expense of the good of the entire team.

This principle has been utilized effectively in cooperative co-
evolution of neural networks. Instead of a population of full net-

Fig. 1. The ESP method. Each subpopulation of neurons contributes one
neuron (with its input and output connections) to form the hidden layer of the
neural network, which is then evaluated in the task. The fitness is passed back to
the participating neurons. This scheme is used to evolve the central-controller
neural network (Fig. 4) that controls all three predators simultaneously. The
extension to multiple controllers (the Multiagent ESP method) is depicted in
Fig. 3.

works that could potentially solve the task, a population of par-
tial solutions, i.e., partial networks or neurons or connections,
are evolved [17], [18], [36], [38], [41], [44]. Such methods are
powerful because they break the problem of finding a solution
network into smaller subproblems, making search faster, more
focused, and diverse. One useful such approach is ESP, as will
be described next.

B. Enforced SubPopulations (ESP)

The ESP neuroevolution method 1 [15], [16] is an extension
of Symbiotic, Adaptive NeuroEvolution (SANE, [35]–[37]).
SANE is a method of neuroevolution that evolves a population
of neurons instead of complete neural networks. In other words,
in SANE each chromosome represents the connections of a
single neuron instead of the structure and weights of an entire
network (analogous to the “Michigan” method of evolving
rule-based systems, where each chromosome represents a
single rule [25], versus the entire rule set as in the “Pitt” method
[51]). Neurons are selected from the population to form the
hidden-layer of a neural network, which is then evaluated on
the problem. Each neuron’s fitness is the average fitness of
all networks in which it participated. ESP extends SANE by
allocating a separate population for each hidden layer neuron of
the network; a number of neuron populations are thus evolved
simultaneously (Fig. 1). ESP is thus, a cooperative coevolution
method: each neuron population tends to converge to a role that
results in the highest fitness when the neural network is eval-
uated. In this way, ESP decomposes the problem of finding a
successful network into several smaller subproblems, resulting
in more efficient evolution [15], [16].

The ESP idea can be further extended to evolution of indi-
vidual connections [18]. In several robot control benchmark
tasks, ESP and its connection-level extension, CoSyNE, were
compared to other neuroevolution methods such as SANE,

1ESP software is available at http://nn.cs.utexas.edu/soft-list.php.
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GENITOR [60], Cellular Encoding [20], [61], Evolutionary
Programming [47], Evolutionary Strategies [21], and NEAT,
[52] as well as to other reinforcement learning methods such as
Adaptive Heuristic Critic [1], [4], Policy-Gradient Reinforce-
ment Learning [55], Q-learning [40], [58], Sarsa [46], and
VAPS [32]. Because of its robust neural network representation
and efficient search decomposition, ESP-based methods turned
out to be consistently the most powerful, solving problems
faster, and solving harder problems [14], [16]–[18].

These results lead to an intriguing hypothesis about con-
structing multiagent systems: if a neural network can be evolved
effectively as a set of cooperating neurons and connections,
perhaps a team of agents can be evolved the same way. In par-
ticular, perhaps the ESP method can be extended to multiagent
evolution, where not only the neurons, but also the networks
formed from them are required to cooperate in a team in order
to receive a high fitness. Such a method, called Multiagent ESP,
is developed and tested in this paper.

An important question immediately arises: how strongly
should the agents in multiagent evolution be coupled? Neurons
in a network are tightly connected; does cooperation in a mul-
tiagent task require that the agents communicate extensively?

C. Agent Communication

Communication is a diverse field of research, and can be de-
fined in various ways depending on the focus of inquiry. For the
practical purpose of this paper, communication can be defined
as the process where an agent transmits information to one or
more other agents on purpose. This definition captures an im-
portant class of information transfer processes, differentiating
them from, e.g., sensing, which does not require that the agent
makes the information available on purpose, and from various
forms of emitting information that do not require a receiving
agent.

The role of communication in cooperative behavior has been
studied in several artificial life experiments [5], [8], [10], [11],
[27], [48], [54], [59]. These studies showed that communication
can be highly beneficial, even crucial, in solving certain tasks.
For instance, complementing the results in this paper, Floreano
et al. [11] demonstrated conditions under which communica-
tion emerges and is useful in teams of homogeneous agents.
However, the cost of communication—such as the energy ex-
penditure in signaling, the danger of attracting predators, or the
complexity of the apparatus required—was not taken into ac-
count in most of these studies. In fact, even in domains where
communication does contribute toward solving a task, commu-
nicative traits may still not evolve if they involve a significant
cost. Other kinds of cooperative strategies may evolve instead,
depending on the nature of the task, how dense the population
is, and whether resources are available [57].

One particularly interesting form of cooperation without
communication is stigmergy, a concept proposed by Grassé
[19] to describe the coordinated behaviors of social insects.
Grassé observed that worker termites were stimulated to per-
form certain activities by a particular construction of their
nest, transforming it into a new construction, which would in
turn stimulate other activities. The word stigmergy was coined

to describe this process. “The stimulation of the workers by
the very performances they have achieved is a significant one
inducing accurate and adaptable response, and has been named
stigmergy” [19] (translated by Holland and Melhuish [26]).

Holland and Melhuish [26] examined stigmergy and self-or-
ganization in a group of robots that clustered and sorted fris-
bees, and found that the task was solvable using stigmergy-
based coordination without any communication between robots.
Franklin [13] proposed that stigmergic coordination may be an
advantage over communication, because communication and
the associated explicit planning between agents requires addi-
tional architecture, intelligence, and resources. An interesting
hypothesis therefore arises for constructing multiagent systems:
in tasks where stigmergic coordination is possible, the task may
be accomplished more effectively without communication.

This hypothesis is evaluated in the experiments presented in
this paper in three ways: (1) by showing how stigmergy can
emerge in cooperative coevolution when communication be-
tween teammates is not available; (2) by comparing the evo-
lution performance of communicating teams and noncommuni-
cating teams; (3) by comparing the emergent behaviors of com-
municating teams and noncommunicating teams. To facilitate
discussion, noncommunicating cooperation based on stigmergic
coordination is termed role-based cooperation. In certain tasks,
this cooperative strategy is easier to evolve and more powerful
than a strategy based on communication.

In order to make evaluation transparent, a most elementary
form of communication is employed in these experiments.
Whereas each noncommunicating agent is completely unaware
of its teammates, each communicating agent continuously
broadcasts its location to its teammates. Although elementary,
such exchange of information constitutes useful communica-
tion: in many real-world applications involving software agents
or physically situated robots, it is not possible to sense the
teammates’ locations directly, because they may be far away
or obscured or the appropriate sensors may not be available. A
communicative apparatus (such as a radio system) is required
to obtain this information. On the other hand, while other, more
complex, forms of communication are possible, the broad-
casting of locations is sufficient to demonstrate differences
between teams that communicate and those that do not. It
therefore forms a suitable communicative process for studying
cooperation with and without communication.

D. Prey-Capture Task

The experimental platform for studying cooperation and
communication in this paper is the prey-capture task. It is one
example of the general class of pursuit-evasion tasks [33].
Such tasks consist of an environment with one or more prey
and one or more predators. The predators move around the
environment trying to catch the prey, and the prey try to evade
the predators. Pursuit-evasion tasks are interesting because they
are ubiquitous in the natural world, offer a clear objective that
allows measuring success accurately, and allows analyzing and
visualizing the strategies that evolve.

Pursuit-evasion tasks generally cannot be solved with stan-
dard supervised learning techniques like backpropagation. The
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Fig. 2. The prey-capture task. The environment is a 100 � 100 toroidal grid, with one prey (denoted by “X”) and three predators (denoted by “1”, “2” and “3”).
Fig. (a) illustrates a starting scenario: the predators start in a row at the bottom left corner, and the prey starts in a random location. Fig. (b) illustrates a scene later
during a trial. The arrows indicate a general direction of movement: since each agent may only move in the four cardinal directions, a movement arrow pointing 45
degrees northwest means the agent is moving north and west on alternate time steps. Fig. (c) shows the positions of the predators one time step before a successful
capture. The prey always moves directly away from the nearest predator; even though it is as fast as the predators, if the predators approach it consistently from
different directions, eventually the prey has nowhere to run.

correct or optimal decisions at each point in time are usually not
known, and the performance can be measured only after sev-
eral decisions have been made. More complex algorithms are
required that can learn sequences of decisions based on sparse
reinforcement. Pursuit-evasion tasks are challenging for even
the best learning systems because they require coordination with
respect to the environment, other agents with compatible goals,
and adversarial agents [15].

The prey-capture task focuses on the predators’ behavior. It
has been widely used to test multiagent coordination and com-
munication. As was described in previous subsections for ex-
ample, Benda et al. [6] and Haynes and Sen [23], [24] used
this task to assess the performance of different coordination sys-
tems, and Jim and Giles [27] studied the evolution of language
and its effect on performance. In the variant of the task used in
these studies, the predators are required to surround the prey in
specific positions to catch it, and the main difficulty is in co-
ordinating the predators to occupy the proper capture positions
simultaneously. On the other hand, the prey moves either ran-
domly or at a slower speed than the predators, thus allowing the
predators to catch up with it easily.

In contrast, in the experiments described in this paper it is
enough for one predator to move onto the prey to capture it.
However, the prey moves as fast as the predators, and always
away from the nearest predator, and therefore there is no way to
catch the prey simply by chasing it. The main challenge is in co-
ordinating the chase: the agents have to approach the prey from
different directions so that it has nowhere to go in the end. This
behavior requires developing a long-term cooperative strategy,
instead of coordinating the timing of a few actions accurately,
and therefore makes it possible to identify a class of tasks where
efficient cooperation emerges without communication.

III. METHODS

In this section, the implementation of the prey-capture task
and the ESP and Multiagent ESP methods are described, fol-
lowed by the details of the experiments.

A. Prey-Capture Implementation

The prey-capture task in this paper consists of one prey and
three predators in a discrete toroidal environment (Fig. 2). The
prey is controlled by a rule-based algorithm; the predators are

controlled by neural networks. The goal is to evolve the neural
networks to form a team for catching the prey. The different
approaches and techniques are compared based on how long it
takes for the team to evolve to catch the prey consistently, and
what kind of strategies they use.

The environment is a 100 100 toroid without obstacles or
barriers (the 100 100 area is also referred to as the “world”
below). All agents can move in four directions: N, S, E, or W.
The prey moves as fast as the predators, and always directly
away from the nearest predator. It starts at a random location
of the world, and the predators start in a horizontal row at the
bottom left corner [Fig. 2(a)]. All the agents make their moves
simultaneously, and an agent can move into a position occupied
by another agent. The team catches the prey when a predator
moves onto the position occupied by the prey. If the predators
have not caught the prey in 150 moves, the trial is terminated
and counted as a failure.

Constrained in this way, it is impossible to consistently catch
the prey without cooperation. First, since the predators always
start at the bottom left corner, behaving greedily would mean
that they chase the prey as a pack in the same direction. The
prey will then avoid capture by running away in the same direc-
tion: because it is as fast as the predators, and the environment is
toroidal, the predators will never catch it (Fig. 18 demonstrates
this scenario). On the other hand, should the predators behave
randomly, there is little chance for them to approach, circle, and
run into the prey. The 150 steps limit is chosen so that the preda-
tors can travel from one corner of the world to the other, i.e.,
they have enough time to move to surround the prey, but it is
not possible for them to just mill around and eventually capture
the prey by accident.

B. Neuroevolution Implementation

Three approaches to evolving and controlling agents will be
tested: the central controller approach, the autonomous commu-
nicating approach, and the autonomous noncommunicating ap-
proach. In the central controller approach, all three predators are
controlled by a single feedforward neural network, implemented
with the usual ESP method (Fig. 1).

For the communicating and noncommunicating autonomous
controllers, Multiagent ESP will be used. This method extends
the subpopulation idea to the level of networks (Fig. 3). Each
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Fig. 3. The Multiagent ESP method. Each predator is controlled by its own
neural network, formed from its own subpopulations of neurons. The three
neural networks are evaluated in the task at the same time as a team, and the
fitness for the team is passed back to all participating neurons.

Fig. 4. Central controller network for a team of three predators. This network
receives the relative � and � offsets (i.e., relative distance) of the prey from
the perspective (i.e., location) of all three predators, and outputs the movement
decisions for all three predators. This way it acts as the central controller for the
whole team. There are nine hidden units, and the chromosomes for each hidden
layer unit consist of 21 real-valued numbers (six inputs and 15 outputs).

predator is controlled by its own feedforward network, evolved
simultaneously in separate populations. Each network is formed
using the usual ESP method. These three networks are then eval-
uated together in the task as a team, and the resulting fitness

Fig. 5. Controller for each autonomous communicating predator. This network
autonomously controls one of the predators; three such networks are simulta-
neously evolved in the task. The locations of this predator’s teammates are ob-
tained, and their relative � and � offsets are calculated and given to this network
as information obtained through communication. It also receives the � and �

offsets of the prey. There are eight hidden units, and the chromosomes for each
hidden layer unit consist of 11 real-valued numbers (six inputs and five outputs).

Fig. 6. Controller for each autonomous noncommunicating predator. This net-
work receives the prey’s � and � offsets as its inputs. Therefore, it controls a
single predator without knowing where the other two predators are (i.e., there is
no communication between them). There are three hidden units, and the chro-
mosomes for each hidden layer unit consist of seven real-valued numbers (two
inputs and five outputs).

for the team is distributed among the neurons that constitute the
three networks.

Before running the comparisons, an appropriate number of
hidden units was determined for each of the three approaches.
Since small networks typically generalize better and are faster to
train [28], [43], the smallest number of hidden units that allowed
solving the task reliably was found. More specifically, for each
of the three approaches, ten evolution runs were performed on
the prey-capture task, initially with two hidden units. When any
of the ten runs failed to solve the task completely, the number
of hidden units was increased by one and another ten runs were
tried. A run was deemed a failure if it stagnated ten consecutive
times, that is, if its fitness did not improve despite ten burst muta-
tions in 250 generations. Through this procedure, an appropriate
number of hidden units was determined to be nine for the cen-
tral controller, eight for each of the autonomous communicating
controllers, and three for each of the autonomous noncommuni-
cating controllers (Figs. 4–6). The comparisons were run with
these architectures.

In all three approaches, the agents are evolved in a series of
incrementally more challenging tasks. Such an incremental ap-
proach is motivated by natural evolution and shaping of animal
behavior, where complex behaviors gradually emerge through
a series of incremental challenges [9], [49]. It also facilitates
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TABLE I
THE SEQUENCE OF INCREMENTALLY MORE DIFFICULT TASKS

computational evolution in complex tasks, where direct evolu-
tion in the goal task might otherwise take a long time, or result
in inadequate, mechanical strategies such as running around in
circles [15], [56]. One way to establish incremental evolution
would be to coevolve the prey with the predators [53]. How-
ever, in order to make evolutionary progress transparent and the
results comparable, a fixed set of tasks is used in this paper. Evo-
lution proceeds through six stages: in the easiest task the prey
is stationary, and in each subsequent task it moves at a faster
speed and with a greater probability of heading away from the
nearest predator, until in the final task it moves as fast as the
predators, and always away from the nearest predator. Table I
gives the speeds and evasive probabilities of the prey for each
of these tasks; small variations to this schedule lead to similar
results. When a team manages to solve the current task con-
sistently, the next harder task is introduced. The team can thus
utilize what it has already discovered in the easier task to help
guide its evolution in the new, harder task. In the prey-capture
task, incremental evolution is particularly useful because it al-
lows the predators to discover early on how to catch the prey
at close proximity. Placing the predators into the final task right
from the start fails because they do not get close to the prey often
enough to discover how to catch it. The incremental approach is
therefore used to give evolution more experience with the nec-
essary skills that would otherwise be hard to develop.

The fitness function consists of two components, depending
on whether the prey was captured or not

if the prey was not caught

if the prey was caught

where is the average initial distance of the predators from the
prey, and is the average final distance. This fitness function
was chosen to satisfy four criteria.

1) If the prey is caught, the starting scenario (i.e., the ini-
tial distance from the prey) should not bias the fitness. In-
stead, teams should be rewarded if their ending positions
are good—that is, if all predators are near the prey.

2) If the prey is not caught, teams that covered more distance
should receive a higher reward.

3) Since a successful strategy has to involve sandwiching the
prey between two or more predators, at least one predator
must travel the long distance of the world so that two preda-
tors can be on the opposite sides of the prey. Thus the time
taken for each capture (within the 150 step limit) tends to
be about the same, and should not be a factor in the fitness
function.

4) The fitness function should have the same form throughout
the different stages of incremental evolution, making it
simple and convenient to track progress.

The neuron chromosomes are concatenations of the
real-valued weights on the input and output connections
of the neuron (Fig. 1). As is usual in ESP, burst mutation
through delta-coding [62] on these weights is used as needed
to avoid premature convergence: if progress in evolution stag-
nates (i.e., the best solution 25 generations earlier outperforms
the current best solution), the populations are reinitialized
according to a Cauchy distribution around the current best
solution. Burst mutation typically takes place in prolonged
evolution in difficult tasks [15], [16].

C. Experimental Setup

In each experiment in this paper, the different approaches
were each run ten times with different random initial popu-
lations. Each run consisted of several generations, until suc-
cess or maximum number of generations was achieved. The re-
sults were averaged across the runs and compared statistically
(through Student’s paired two-tailed -test with ).

The following parameter settings were used for ESP and its
multiagent extension. Each subpopulation of neurons consisted
of 100 neurons; each neuron (or chromosome) was a concate-
nation of real-valued numbers representing full input and output
connections of one hidden unit. During each evolutionary gener-
ation, 1 000 trials were run wherein the neurons were randomly
chosen (with replacement) from their subpopulations to form
the neural networks. In each trial, the team was evaluated nine
times (to match the number of evaluations in the test benchmark
suite to be described shortly). Unlike in the benchmark suite,
the prey started in a random location in each of the nine eval-
uations. The predators always started in the bottom, left corner
[Fig. 2(a)], giving the different trials a common structure that
makes it easier to analyze and compare results (Sec. VI-C shows
that similar results are obtained when predators start at random
locations). The fitnesses over the nine evaluations were aver-
aged, and assigned to all the neurons that constituted the net-
work. Thus, each neuron was evaluated as part of ten different
networks on average, and each generation consisted of 9000
total network evaluations. After the trials, the top 25% of neu-
rons in each subpopulation were recombined using one-point
crossover. The offspring replaced the bottom 50% of the neu-
rons, and they were then mutated with a probability of 0.4 on
one randomly chosen weight on each chromosome, by adding a
Cauchy-distributed random value to it. These parameter values
were found effective in preliminary simulations, but the results
are not highly sensitive to them.
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The environment is stochastic only in the prey’s starting lo-
cation, and this location is the only factor that determines the
course of action taken by the predators. In order to test these
team strategies comprehensively, a suite of benchmark problems
was implemented. The lower left 99 99 part of the world was
divided into nine 33 33 subsquares. In each trial, each team
was tested nine times, with the prey starting at the center of each
of these subsquares in turn. Such an arrangement provides a
sampling of the different situations, and allows estimating how
effective each team is in general. A team that manages to catch
the prey in all nine benchmark cases is considered to have com-
pletely solved the task, and indeed such a team usually has a
100% success rate in random, general scenarios.

Communication between predators was modeled by giving
the locations of the other predators as input to each predator’s
neural network. The idea is that this transmission of information
takes place on purpose, i.e., each predator broadcasts its location
in order for the other predators to pick it up. In contrast, even
though the predators also receive the location of the prey as their
input, the prey does not make it available on purpose. Instead,
the idea is that the predators use sensors to obtain this informa-
tion. (To make this scenario concrete, imagine a situation where
the pursuit occurs in a dark environment where the predators can
move silently but the prey moves with a sound. The prey can be
located based on that sound, and the predators can then use vo-
calizations to transmit their location at will). According to the
definition adopted in Section II-C, the predators’ locations are
communicated, whereas the prey’s location is not. Therefore,
the controllers that receive predators’ locations are called com-
municating controllers, and those that do not (even though they
obtain the same information through stigmergy) are called non-
communicating controllers in this paper.

IV. EVOLUTION OF COOPERATIVE BEHAVIOR

In this section, two baseline experiments are presented,
testing the two main hypotheses of this paper: first, that coop-
erative coevolution of autonomous controllers is more effective
than evolving a central controller in this task (Section IV-A),
and second, that the agents controlled by autonomous neural
networks can evolve to cooperate effectively without commu-
nication using stigmergy (Section IV-B). These behaviors and
conditions under which they arise are then analyzed in more
detail in Sections V and VI.

A. Standard Evolution of a Central Controller Versus
Cooperative Coevolution of Autonomous Controllers

This section tests the first hypothesis, i.e., that it is easier
to coevolve three autonomous communicating neural networks,
each controlling a single predator (Fig. 5), than it is to evolve a
single neural network that controls the entire team (Fig. 4). The
number of evolutionary generations needed to solve the task,
that is, to evolve a team able to catch the prey in all nine bench-
mark cases, are compared for the two approaches.

Fig. 7 shows a clear result: on average, the three autonomous
controllers were evolved almost twice as fast as the centralized
controller. The conclusion is that the cooperative coevolution

Fig. 7. Evolution performance for each approach. The average number of gen-
erations, with standard deviation, required to solve the task is shown for each ap-
proach. The centrally controlled team took 50% longer than the autonomously
controlled communicating team, which in turn took over twice as long as the
autonomously controlled noncommunicating team, to evolve a successful solu-
tion. All differences are statistically significant �� � �����.

Fig. 8. Progress of evolution through incrementally more difficult tasks.
Number of generations required for each approach to solve each task in the se-
quence is shown. As shown in Table I, in Task 1 the prey is stationary, whereas
in Task 6 it moves at the same speed as the predators, and always away from
the nearest predator. The centrally controlled teams did not take statistically
significantly longer than the autonomously controlled communicating teams to
solve the easier tasks. With more difficult tasks (i.e., task 6), the differences
became statistically significant. On the other hand, the autonomously controlled
noncommunicating teams solved all the tasks significantly faster than either of
the two other approaches.

approach is more powerful than the centralized approach in this
task. (The results in Section VI-A further confirm that this re-
sult does not simply follow because the networks have different
sizes.)

Fig. 8 shows how long it took each approach to solve each in-
crementally more difficult task during evolution. While the cen-
trally controlled teams require just slightly more time to solve
the easier tasks than the autonomous controllers, as the tasks be-
come more difficult, the differences in performance grow sig-
nificantly. This result suggests that the autonomous controller
approach is most useful with harder tasks.
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B. Cooperative Coevolution With Versus Without
Communication

The conclusion from the first comparison is that separating
the control of each agent into disjoint autonomous networks al-
lows for faster evolution. The controllers no longer receive di-
rect information about what the other agents see; however, the
domain is still completely represented in each predator’s inputs,
which include the relative locations of the teammates and the
prey. In this section the available information is reduced further
by preventing the predators from knowing each other’s loca-
tions. This way the agents will have to act independently, relying
on stigmergy for coordination. The objective is to test the second
hypothesis, i.e., that cooperation based on stigmergy may evolve
more efficiently than cooperation based on communication.

The network architecture for such noncommunicating con-
trollers is shown in Fig. 6. The predator no longer receives the
relative and offsets of the other predators, only the offsets of
the prey. These networks were evolved with the same coevolu-
tionary Multiagent ESP method as the communicating networks
of Fig. 5.

The noncommunicating teams solved the entire task more
than twice as fast as the communicating teams (Fig. 7). Further-
more, the noncommunicating teams solved each incrementally
more difficult task significantly faster than the communicating
teams (Fig. 8).

These results show that communication between teammates
is not always necessary: cooperative behavior can emerge even
when teammates do not receive each other’s locations as input.
In fact, since communication is not necessary, it is more effi-
cient to do away with it entirely. In the next section, examples
of evolved behaviors will be analyzed to gain insight into why
this is the case, concluding that the agents rely on stigmergy.
In Section VI, a series of further simulations will be presented
to demonstrate that this result is robust against variations in the
architecture and the task.

V. ANALYSIS OF EVOLVED BEHAVIORS

In this section, the behaviors evolved using the three ap-
proaches are analyzed in two ways: first, the degree to which
each predator’s actions depend on those of the other preda-
tors is measured quantitatively. Second, examples of evolved
behaviors are analyzed qualitatively. This analysis leads to
the characterization of team behaviors in two extremes: those
based on role-based cooperation, where interaction between
different roles takes place through stigmergy, and those based
on communication.

A. Measuring Dependency

A predator’s actions are independent of its teammates if the
predator always performs the same action for the same prey po-
sition, regardless of where its teammates are. Conversely, the
predator’s strategy is dependent on its teammates if its actions
are determined by both the prey’s and the teammates’ positions.

The team of autonomous, noncommunicating predators must
act independently: since the neural network for each predator
cannot see the locations of its teammates, their positions cannot

Fig. 9. Action dependence in teams evolved using each approach. The cen-
trally controlled and autonomous communicating teams both evolved behaviors
in which each agent’s actions were highly dependent on its teammates posi-
tions (the difference is statistically insignificant, with � � ����). The noncom-
municating team’s evolved behaviors were independent (the difference between
the dependence of the noncommunicating team and those of the other two ap-
proaches is statistically significant, � � ����).

affect its actions. A more interesting question is whether de-
pendent actions evolve in the communicating team. The agents
could evolve to simply ignore their communication inputs, or
they could evolve to use communication to develop a coordi-
nated strategy. Also, it is interesting to observe whether the ac-
tions of a centrally controlled team are more dependent than
those of an autonomous communicating team, since its control
architecture is more tightly coupled between teammates.

Action dependence can be measured in the following way: for
each predator in the team, a sample is taken of possible relative
prey positions. For each of these sampled positions, possible
configurations of teammates’ locations are then sampled. Each
such case is presented to the predator’s control network, and the
predator’s resulting action observed. The percentage of actions
that differ for the same prey position (but different teammate
positions) is a measure of how dependent this predator’s actions
are on its teammates. The team’s dependence is obtained as the
average of those of its three predators.

The dependencies of the centrally controlled, communi-
cating, and noncommunicating teams are compared in Fig. 9.
As expected, the noncommunicating predators act indepen-
dently. In contrast, over 90% of the actions of the centrally
controlled and communicating team members depend on the
other predators. On average, the centrally controlled teams
were slightly more dependent than the communicating teams,
however, this difference is not statistically significant.

These results demonstrate that indeed the communicating
teams evolve a distinctly different behavior from the noncom-
municating teams. Even though the weights on the communica-
tion inputs could evolve to zero, they do not. Apparently, given
a starting point where all weights are random, it is easier for
evolution to discover an adequate communicating strategy than
to unevolve communication altogether. An interesting issue
is whether a different starting point would bias evolution to
discovering noncommunicating solutions instead. This question
is addressed in Section VI-D.
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Fig. 10. A sample strategy of a noncommunicating team. In Frames 1 and 2, the predators are in setup mode, maneuvering into an appropriate chase configuration.
In Frame 3, they switch to chase mode: predators 2 and 3 chase the prey toward predator 1, which acts as a blocker. This strategy is effective and does not require
communication. Animated demos of this strategy, and others discussed in this paper, are available at http://nn.cs.utexas.edu/?multiagent-esp.

B. Characterizing Sample Behaviors

Dependence measurements demonstrate that the behaviors
differ, but to understand how, actual examples need to be
analyzed. In this section, example behaviors for each approach
are described and compared in detail. The main results are
that without communication, evolution produces specific roles
for each team member, and these roles interact only indirectly
through stigmergy, that is, by causing changes to the envi-
ronment that affect the other teammates’ roles; furthermore,
these teams utilize a single effective strategy in all cases. On
the other hand, evolution with communication produces agents
with more varied (although less effective) behaviors, able to
employ two or more different strategies at different times.

A typical successful strategy for the noncommunicating team
is illustrated in Fig. 10. This strategy is composed of two stages,
the setup stage and the chase stage. In the setup stage, illus-
trated in the first two frames, the predators maneuver the prey
into an appropriate configuration for a chase: In Frame 1, preda-
tors 2 and 3 move eastward, causing the prey to flee in the
same direction, while predator 1 moves westward. When the
prey detects that predators have closed in to its south, it starts
fleeing northward (Frame 2). In Frame 3, the predators detect
that the prey is directly to their north, and the chase stage of the
strategy begins. This stage involves two different roles, chasers
and blockers. Predator 1, the blocker, moves only in the hori-
zontal direction, staying on the same vertical axis as the prey,
while predators 2 and 3, the chasers, pursue the prey northward
(Frames 3 and 4). Eventually, the prey is trapped between the
blocker and the chasers, who move in for the capture. Notice
that this strategy requires no communication between predators.
As long as the predators get the prey into a chase configuration,
and the blockers and chasers execute their roles, the prey will
always be caught. Moreover, it is reliable for all starting loca-
tions of the prey, even when the predators do not all switch from
setup to chase modes at the same time.

From the above description, it is clear that some form of co-
ordination is taking place, even without communication. When
the prey is not directly above (or below) a predator, the predator
is in setup mode, moving either east (predators 2 and 3), or west
(predator 1). This action causes a change in the environment,
i.e., a specific reaction on the part of the prey: to flee east or
west. Because of this reaction, each of the predators will eventu-
ally find the prey directly above or below it, triggering a second
activity: they either chase the prey north (predators 2 and 3), or

remain on the prey’s vertical axis (predator 1). This activity in
turn causes a change in the prey’s behavior, to flee north, until
it is eventually trapped between chasers and blockers. This se-
quence of events is a clear example of stigmergy: each agent’s
action causes a change in the environment, that is, a reaction on
the part of the prey; this reaction in turn causes a change in the
agent’s and its teammates’ behaviors.

Sample behavior of a communicating team is illustrated in
Fig. 11. Two different strategies are shown because this team
actually displays both of them, and also their combinations
and variations, depending on the relative locations of the prey
and the other predators at each timestep. The first strategy, in
Fig. 11(a), illustrates behavior similar to the chaser-blocker
strategy. The first frame is a snapshot of the starting position.
Predators 1 and 2 are the chasers, and they start pursuing the
prey upward. Predator 3 is the blocker, and it moves left onto
the prey’s vertical axis. At this point, however, it starts chasing
the prey downward, in Frame 2, until the prey is trapped be-
tween all three predators in Frame 3. Already this strategy is
more varied than those of the noncommunicating teams, as a
combination of blocking and opposite chasers.

Another strategy employed by the same team in a different
situation is shown in Fig. 11(b). In Frame 1, predators 1 and
3 start moving toward the prey diagonally upward and down-
ward, while predator 2 moves upward until it is horizontal with
the prey. By Frame 2, predators 1 and 3 are chasing the prey
horizontally, until it is trapped between them and predator 2
in Frame 3. This strategy is again similar to the chaser-blocker
strategy, except this time the prey is chased horizontally instead
of vertically, and the chase includes diagonal movement as well.

Although each strategy is similar to those of noncommuni-
cating teams, in this case they are employed by one and the
same team. This team occasionally also utilizes combinations
of these strategies, for example by starting with one and fin-
ishing with the other. Thus, each predator does not have a spe-
cific, fixed role, but modifies its behavior depending on the sit-
uation. Through communication each predator is aware of its
teammates’ relative locations, and its behavior depends not only
on the prey’s relative position, but also directly on what the
other predators are doing. In this way, the communicating strate-
gies are more varied. On the other hand, they are less efficient
to evolve (Section IV-A), and less robust (Section VI-B). In
a sense, the noncommunicating teams resemble players in a
well-trained soccer team, where each player knows what to ex-
pect from the others in each play, whereas the behavior of the
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Fig. 11. Two sample strategies of the same communicating team. This team employs the two strategies shown above, as well as their variations and combinations.
In the first, (a), the chase starts with two chasers and a blocker, but ends with opposite chasers. In the second, (b), there is a blocker and two chasers throughout,
but the movement is horizontal. In this manner, the same team utilizes different strategies, depending on the starting position of the prey.

communicating teams is similar to a pickup soccer team where
each player has to constantly monitor the others to determine
what to do. Such players can perhaps play with many other kinds
of players, but not as efficiently.

The centrally controlled teams exhibit behavior nearly iden-
tical to those of the communicating autonomous teams. In par-
ticular, the more tightly coupled architecture does not translate
to behavior that is visibly more coordinated in this task.

Of course we have to be careful not to attribute undue
intelligence to neural networks that simply manage to adapt
to each other’s behavior. However, the differences in behavior
are striking: the noncommunicating teams employ a single,
efficient, fail-proof strategy in which each team member has
a specific role, while the communicating and centrally con-
trolled teams employ variations and combinations of two or
more strategies. These two forms of cooperative behavior can
be distinguished as role-based cooperation and communica-
tion-based cooperation. Role-based cooperation consists of two
ingredients: cooperation is achieved through the combination
of the various roles performed by its team members, and these
roles are coordinated indirectly through stigmergy. On the
other hand, communication-based cooperation may or may not
involve roles performed by its team members, but the team
members are able to coordinate through communication with
each other.

In the following section, these cooperative strategies will be
characterized further by testing how robustly they evolve and
how robustly the evolved agents perform under various extreme
conditions.

VI. ROBUSTNESS OF STRATEGY EVOLUTION AND

PERFORMANCE

Section IV showed that when minimal neural-network ar-
chitectures are used for each approach, the coevolutionary ap-
proach evolves faster than the centralized approach, and the
team without communication evolves faster than the team with

communication. This section presents a number of control sim-
ulations to verify that these results are robust. First, it is im-
portant to verify that they hold when equivalent neural-network
architectures are used across all approaches. Also, since the
evolved noncommunicating strategies include fixed roles, it is
necessary to demonstrate that they are robust against changes in
the prey’s behavior. It is also important to show that evolution
can discover noncommunicating strategies robustly even when
the predators are initially placed randomly. Another interesting
issue is whether communicating teams can be biased by design
to evolve role-based, rather than communication-based cooper-
ative behavior. Finally, it is important to demonstrate that co-
evolution of heterogeneous agents is indeed necessary to solve
the task. Each of these issues is studied in a separate experiment
in this section.

A. Do the Results Hold Across Equivalent
Network Architectures?

When the network architectures were optimized separately
for each approach, the coevolutionary approach solved the task
faster than the centralized approach (Section IV-A), and teams
without communication faster than teams with communication
(Section IV-B). However, it is unclear how much of this result
is due to the different search-space sizes (i.e., different number
of weights that need to be optimized), and how much is due to
the centralized versus distributed control strategy itself, or to the
availability of communication.

In the centralized approach, the neural network had nine
hidden units and 21 connections per unit for a total of 189
weights (Fig. 4), whereas the network used in the coevolu-
tionary approach (with communication) had eight hidden units
and 11 connections per unit for a total of 88 weights (Fig. 5).
Such a smaller search space may allow evolution to progress
significantly faster. The same issue arises in comparing com-
municating versus noncommunicating networks: the latter
approach has three hidden units and seven connections per unit
for a total of 21 weights (Fig. 6).
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Fig. 12. The large-network versions of the communicating and noncommunicating controllers. (a) The network used in the autonomous communicating approach;
ten of the outputs are ignored. (b) The network used in the autonomous noncommunicating approach; ten of the outputs are ignored, and four inputs are fed random
noise. In both cases, there are nine hidden units, and the chromosomes for each hidden layer unit consist of 21 real-valued numbers (six inputs and 15 outputs),
which is the same as in the central-controller approach.

Fig. 13. Evolution performance for each approach with equivalent network architectures. The average number of generations, with standard deviation, required
to solve the task is shown for each approach. The performance is about the same as with minimal architectures, and the relative performance between approaches
is preserved. The differences between the three approaches are statistically significant �� � �����.

Of course, such small search spaces are possible precisely
because the approaches are different, but it is still interesting
to verify that the results are not completely due to search com-
plexity. To this end, the experiments in Sections IV-A and IV-B
were repeated with identical network architectures across all
approaches. Specifically, all approaches use the architecture of
the centralized approach, with nine hidden units, six inputs, and
15 outputs. When some inputs are not part of the approach (such
as teammate locations in the noncommunicating approach),
random noise values are used for them. Outputs that are not
used are simply ignored (Fig. 12). In this manner, each approach
receives and generates the same information as before, but now
within a uniform architecture. The evolution performance of the
coevolutionary approaches with such architectures is compared

against that of the original centralized approach, providing a
comparison of the three different approaches given a uniform
search space.

Fig. 13 presents the results for these experiments. Using
larger neural networks did not significantly change the number
of required generations to solve the task for either of the co-
evolutionary approaches (i.e., with or without communication).
As a result, the relative differences in evolution time between
the three approaches are preserved. Therefore, the better per-
formance of the coevolutionary over the centralized approach,
and that of the coevolutionary noncommunicating over the
coevolutionary communicating approach, are indeed due to the
approaches themselves, and not simply a consequence of being
able to search in a smaller space.
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Fig. 14. Robustness of communicating and noncommunicating teams against
novel prey behavior. In the first test, the prey moved three steps each time and
in a random direction 20% of the time; in the second, three steps and randomly
50% of the time; and in the third, always right. Surprisingly, the noncommu-
nicating teams performed significantly better than the communicating teams
(� � ���� for all three tests), even though the communicating strategies are
generally more varied. The noncommunicating teams tolerate the occasional
novel behavior well as long as their basic strategy is valid. However, even they
cannot cope if the prey employs a consistently different strategy.

B. Are the Strategies Robust Against Novel Prey Behavior?

Although the noncommunicating networks work together
like a well trained soccer team, soccer (like most interesting
real world tasks) is unpredictable. For example, a player from
the other team may intercept a pass, in which case the team
members will have to adapt their strategy quickly to cope with
the new situation. To determine how the noncommunicating
team can deal with such unpredictability, three further exper-
iments were conducted where the noncommunicating teams
were pitted against a prey that behaved differently from those
encountered during evolution. For comparison, the same tests
were also run for the communicating teams. Since the noncom-
municating teams’ predators act according to fixed roles, they
might not be able to adapt as well as the communicating teams’
apparently more flexible agents.

The first experiment presented the agents with a more chal-
lenging version of the original behavior: the prey moved three
times faster than usual (by moving three steps each time) and in
a random direction 20% of the time. The second test was similar
but harder: the prey moved three times faster than usual and in a
random direction 50% of the time. In the third experiment, the
prey exhibited a distinctly different strategy from the original
behavior: it moved at the same speed but always to the right.

The results, summarized in Fig. 14, are surprising: the non-
communicating teams are more robust against unpredictable
prey than the communicating teams. Apparently, the first two
prey behaviors are still familiar enough so that the fixed roles
are effective: the teams still catch the prey about 50% of the
time. The agents only have to track the occasional erratic
movement, otherwise their strategy is effective as is, even when
the prey is substantially faster. The communicating teams, how-
ever, have a narrower range of adaptable situations, particularly
because their agents tend to switch strategies and roles based
on the current state of the world, and thus get easily confused

Fig. 15. Evolution performance of the three approaches when the predators
start at random locations. In this harder task, evolution took longer than with
fixed initial placement of predators in all cases. Moreover, as before, the non-
communicating teams were significantly easier to evolve than communicating
teams �� � �����, which were slightly easier than central controllers �� �

����. The team behaviors were also similar to those evolved earlier.

by the unexpected prey actions. In the third case, where the
prey always moves right, neither team is able to track it well.
This behavior is consistently novel, and the agents are evolved
not to expect it.

In sum, teams that have delegated specific and fixed roles to
their members are more tolerant of noisy or unusual situations,
as long as their basic strategy is still valid.

C. Are the Strategies Robust With Random Deployment?

In all experiments so far, the predators always started at the
bottom left corner of the world, and only the prey’s initial posi-
tion was varied. Such a limitation makes it possible to analyze
the resulting behaviors systematically. It is important to demon-
strate that similar behavior evolves also in the more general case
where the predators’ positions are initially random. Coordina-
tion is more difficult then because the agents first need move into
proper positions for the chase. The issue is, will the noncommu-
nicating networks be able to establish effective roles even then?

The experiment was set up as described in Section III-C, ex-
cept that predators were placed randomly in the world during
both evolution and benchmark tests. Furthermore, the number of
evaluations per trial during evolution was increased from nine to
45, in order to obtain a sufficient sample of the different starting
positions (45 was found to be sufficient experimentally). The
number of evaluations during benchmark tests was increased
from nine to 900 for the same reason (whereas relatively sparse
sampling is sufficient to guide evolution, the benchmarks need
to measure performance accurately). A network was deemed
successful if it caught the prey in 750 of the 900 tests.

The minimum effective network sizes were determined as in
Section III-C. In this more challenging task, they were found to
be 13 hidden units for the centrally controlled and communi-
cating autonomous networks, and five hidden units for the non-
communicating networks.

Fig. 15 shows how long it took each approach to solve the task
on average. Although this task was much harder, the conclusions
are the same as before: the communicating autonomous teams
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Fig. 16. Degrees of dependence of communicating teams biased to evolve role-
based cooperation. The communicating teams with communication weights ini-
tialized to zero evolved behaviors that were 14% dependent on the positions of
teammates; with all weights initialized to zero, the evolved behaviors were 48%
dependent. In both cases, the evolved behaviors were significantly less depen-
dent on teammates compared to those of the normal (randomly initialized) com-
municating teams, which was 91% dependent on teammates (all differences are
statistically significant, � � ����).

were easier to evolve than central controllers, and the noncom-
municating networks easier than the communicating networks.
The strategies evolved were also similar to those with fixed ini-
tial placement of predators.

D. Can Evolution Be Biased Toward Role-Based Cooperation?

As discussed in Section V, the communicating networks
could in principle evolve noncommunicating behavior by set-
ting weights to zero on the connections from those input units
that specify the other predators’ positions. It does not happen,
and the reason may be that it is difficult for evolution to turn
off all such connections simultaneously. It is easier to discover
a competent communicating solution instead, utilizing those
inputs and weights as well.

An interesting question is whether evolution would discover
role-based cooperation if it was biased to do so from the begin-
ning. Such an experiment was run by setting all the communi-
cating weights to zero in the initial population; the other weights
were initialized randomly as usual. Evolution only had to keep
the communicating weights at zero while developing the rest of
the network to solve the task. As a comparison, networks with
all weights initially at zero were also evolved, and the results
compared to normal evolution of communicating networks.

The action dependencies that evolved are shown in Fig. 16.
The results show that such an initial bias does have an effect:
evolution discovers behaviors where the actions depend sig-
nificantly less often on the positions of other predators. With
communication weights initially at zero, 14% of the actions de-
pend on them, and with all weights initially zero, 48%. In con-
trast, the earlier evolved networks with all randomly initialized
weights exhibit 91% dependency. Qualitatively the behaviors of
the initially biased networks consist mostly of role-based coop-
eration, with occasional switches or deviations in the roles of
the predators.

Fig. 17. Evolution performance of communicating teams biased to evolve role-
based cooperation. The communicating teams with communication weights ini-
tialized to zero solved the task significantly faster than the normal communi-
cating teams �� � �����, taking about the same number of generations as the
noncommunicating teams �� � �����. On the other hand, with all weights ini-
tialized to zero, evolution was as slow as with normal communicating teams
�� � �����, and slightly slower than with communicating weights initialized
to zero and noncommunicating teams �� � �����.

The performance in terms of number of generations needed
to solve the task is shown in Fig. 17. Teams with communica-
tion weights initialized to zero evolve significantly faster: the
number of generations required, compared to the normal com-
municating teams, dropped by a factor of three, making it as fast
as the noncommunicating teams. When all weights are initial-
ized to zero, the improvement in evolution time was found to be
insignificant.

These results show that evolution can indeed discover
role-based cooperation, and the number of generations required
can be comparable to that needed by an architecture that forces
role-based behavior (i.e., the noncommunicating networks).
However, the initial state needs to be biased the right way, and
the role-based cooperation discovered may not be perfect. In
other words, it is still important for the designer of a multiagent
system to recognize whether role-based cooperation could work
in the task, and utilize the appropriate architecture to evolve it.

E. Is Coevolution Necessary?

Although the performance of cooperative coevolution looks
convincing, it does not necessarily mean that coevolution is es-
sential for the task. Perhaps it is possible to evolve good preda-
tors individually, and just put them together to solve the task?
This subsection demonstrates experimentally that such an ap-
proach is not sufficient: they do not evolve cooperative behavior
like they do with coevolution.

A single predator without communication inputs (as shown
in Fig. 6) was evolved alone incrementally in the prey-capture
task, using the standard ESP method as described in Section II-B
and Fig. 1. The predator was allowed to evolve until it could
no longer improve its fitness. This process was repeated three
times, each time with a new predator, to produce three indepen-
dent but competent predators. These three predators were then
put into the same environment and evaluated in the prey-capture
task.



YONG AND MIIKKULAINEN: COEVOLUTION OF ROLE-BASED COOPERATION IN MULTIAGENT SYSTEMS 183

Fig. 18. A strategy of three individually evolved predators placed on the same environment. The predators chase the prey together in the nearest direction, but are
unable to catch it. Coevolution is thus essential in this task to evolve successful cooperative behavior.

The results support the hypothesis that coevolution is neces-
sary. When a predator evolves alone, it is never able to catch the
prey, since the prey moves at the same speed as the predator.
It evolves to chase the prey but is never able to reduce the dis-
tance between them, and is only able to prevent the prey from
increasing it. When the three individually evolved predators
are put together against the prey, they all chase the prey in the
nearest direction, and are unable to catch it at all—the prey
keeps running and maintains the distance (Fig. 18). In other
words, coevolution is essential in this task to evolve successful
cooperative behavior.

F. Are Heterogeneous Agents Necessary?

Even though a team of individually evolved predators cannot
catch the prey, it is possible that a homogeneous team, i.e., one
where all predators are controlled by identical networks, could.
In the current experimental setup, such a team can be successful
only when the agents communicate. Otherwise, because they
start out close together, they will all employ the same behavior,
and fail like the team in the previous section.

In a separate experiment, communicating networks were
evolved through the standard ESP method. Each network was
evaluated by making three copies of it, each controlling one of
the three predators in a team. The fitness of such a homoge-
neous team was then taken as the network’s fitness. Networks
of different sizes were evolved, from six hidden units up to 16,
with ten runs at each size.

The success rate was extremely low. The homogeneous teams
were able to solve the task only three times out of the 100 total
runs. Apparently, it was difficult for evolution to discover a way
to establish the roles initially in the beginning of the chase. In
the heterogeneous communicating teams all agents are different
and their behaviors diverge in the beginning, and the agents can
immediately adopt a strategy that fits the situation. In the homo-
geneous team, all predators initially perform the same actions,
and it is difficult to break the symmetry. A more effective form
of communication might be to signal roles rather than simply
sensing teammates’ locations. Each predator in turn would de-
cide on a distinct role (such as chase northward, or block hori-
zontally), and communicate that to its teammates. Alternatively,
evolving heterogeneous networks allows symmetry breaking to
occur naturally, resulting in effective heterogeneous behaviors
without a negotiation phase.

VII. DISCUSSION

In Section IV-A, a central controller was found to take over
50% longer to evolve than autonomous cooperating controllers

to solve the prey-capture task. Cooperative coevolution is able to
decompose the task into simpler roles, thereby making it easier
to discover solutions.

Such decomposition is a special case of speciation in evolu-
tionary systems. Speciation has been widely used to maintain
diversity in evolution. Using techniques such as islands and fit-
ness sharing [31], [39], [50], separated populations are encour-
aged to diverge, resulting in more efficient search of the solu-
tion space. If these separated populations are further evaluated
jointly and rewarded with a global fitness, they tend to converge
to heterogeneous policies that work well together. This is the
driving mechanism behind cooperative coevolution and also be-
hind ESP and its multiagent extension. ESP preserves diversity
across populations of neurons and networks, because these pop-
ulations are disjoint by design. Although diversity is gradually
lost within each subpopulation as evolution focuses on a solu-
tion, the subpopulations become distinctly different from each
other, and diverse and complementary roles result. Thus, the ob-
served cooperation between predators emerges from coopera-
tion between populations during evolution.

Section IV-B presented the result that predators without
knowledge of teammates’ relative locations evolve to cooperate
and solve the task more than twice as fast than predators
with such knowledge. This result is interesting because such
knowledge from communication allows each predator to make
decisions based directly on where the other predators are, as
well as where the prey is. On the other hand, noncommunicating
predators do not have such knowledge, and have to coordinate
using stigmergy. At first glance, this result seems attributable
to three factors. First, allowing communication usually requires
more structure (the minimal communicating autonomous con-
trollers have eight neurons with 11 weights each, while the
minimal noncommunicating autonomous controllers have three
neurons with seven weights each), which translates to a larger
search space. However, this difference turns out to be unimpor-
tant. As discussed in Section VI-A, when the same architecture
is used across all approaches, the noncommunicating approach
still outperforms the communicating approach substantially.

The second potential factor is that communication presents
more information for evolution to understand and organize,
which might take more evolutionary generations. While it
is theoretically possible for evolution to simply discard the
unnecessary information, Section VI-D demonstrated that
evolution instead attempts to make use of it. On the other hand,
Section VI-A showed that evolution takes little time to discard
random noise fed into the extra inputs of the noncommunicating
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approach: the number of generations taken to solve the task is
the same as without noisy inputs. The conclusion is that with
evolutionary methods such as ESP it is easy to discard noisy,
random activations given as inputs, but difficult to discard
inputs such as teammates’ relative positions that “make sense,”
even if they are marginally useful at best.

The third potential factor, and actually the most important, is
the different behaviors evolved in each approach and their re-
lationship to the decompositional property of ESP. As was dis-
cussed in Section V, the noncommunicating team always em-
ployed a single strategy where each agent had a specific role.
During evolution, each noncommunicating subpopulation con-
verges toward optimizing specific functions such that the team
solves the task successfully even though the team members are
independent of one another. Evolution without communication
thus places strong pressure on each predator to perform its as-
signed role well. These roles are assigned through simultaneous
adaptive niching: as one agent begins to converge to a partic-
ular behavior, the other agents that behave complementarily are
rewarded, and themselves begin to niche into such roles. This
adaptation in turn yields a higher fitness, and all predators begin
to converge into cooperative roles. In this way, a stigmergic form
of coordination between team members quickly emerges.

In contrast, the communicating team is continuously getting
into different situations during evolution, depending on how
ESP combines neurons and agents into teams. In order to
achieve high fitness, an agent must perform well in a number
of different situations. There is pressure to develop a rich
set of behaviors that cover many situations and can change
dynamically in reaction to the predators’ actions as well as the
prey’s. As a result, the communicating agents utilize variations
and combinations of two or more strategies, instead of clear-cut
roles. It takes time to build an effective set of such behaviors,
which is partly why communicating evolution takes longer.

Franklin [13] pointed out that communication abilities in-
volve nontrivial costs, and suggested that in some cases coordi-
nation without communication may be an advantage over com-
munication-based coordination. Our findings suggest that this
is indeed true: First, communication presents extra information
that ESP needs to organize and utilize, even if such information
is not crucial in solving the task. Second, communication raises
the structural requirements of the communicating controller in
terms of number of hidden units and weights. Even if such com-
plexity does not increase the number of generations needed to
solve the task, it increases the computational resources needed
to store, evaluate and operate upon the larger structures. On the
other hand, stigmergy is faster and simpler for ESP to discover
and represent, due to the powerful decompositional properties
of the algorithm, and is utilized more beneficially in the task to
find an efficient, fixed-role solution.

In general, the results in this paper suggest that it is better to
use the most parsimonious architecture possible to solve a task,
rather than an architecture with full capabilities in the hope that
evolution will ignore the unnecessary capabilities (such as extra
inputs and outputs). First, it is usually faster to evolve simpler
network architectures. Efficiency becomes important especially
with difficult real-world problems, which tend to be noisy and
unpredictable. For example, Section VI-C showed that when

predators start in random initial positions, the number of genera-
tions required to solve the task increased significantly, and each
generation took longer because more sampling was required.
Furthermore, Section VI-D demonstrated that evolution may not
discard extraneous capabilities, but rather to use them in less
efficient and less robust solutions. In tasks that are completely
role-based, a particularly efficient way to simplify a system’s
architecture is to discard communication between agents. The
system will then solve the task faster, and evolve more efficient
and robust solutions.

Of course, not all multiagent tasks may be as efficiently
solved through role-based cooperation. For example in the
prey-capture task where a capture configuration is necessary
(as used by Benda [6] and Haynes and Sen [23], [24]) it would
be very difficult for the agents to guess the exact locations of
the other agents and timing of their actions to achieve suc-
cessful capture. In contrast, if the agents can let other agents
know where they are at any given time, they can coordinate
their actions. Just as team behaviors were classified as either
role-based or communication-based in Section V-B, it may
be possible to classify multiagent tasks likewise: role-based
cooperative tasks can be solved more efficiently by teams em-
ploying role-based cooperation without communication, while
communication-based cooperative tasks require some degree
of communication between teammates to be solved efficiently.
The prey-capture task in this paper is entirely role-based, in
that communication is not necessary at all.

Such a classification is useful because it makes it possible to
identify the most effective approach for each task. As discussed
above, employing a communicating team in a role-based task
may not give the most efficient or most robust solution, while
a noncommunicating team may not even be able to solve a task
that is communication-based. While it may not be possible to
identify the type of task conclusively in every case, there are a
few observations that are likely to be helpful. First, in a task that
requires synchronized actions, communication between team-
mates is likely to be essential, and the task is therefore com-
munication based. An example is a prey-capture task where all
predators have to move to occupy a capture configuration simul-
taneously. (In contrast, in the current task, as long as the preda-
tors approach the prey from different directions, they will catch
the prey; only the appropriate spatial organization is necessary
to succeed.) Second, in a task where an agent may not be able to
complete its role-based subtask, communication is likely to be
required so that agents can seek assistance from teammates, or
to notify them of the problem. For example, if the prey-capture
task included irregularly placed obstacles, stigmergic coordina-
tion might be insufficient to solve the task.

On the other hand, there are likely to be several real-world
tasks where role-based cooperation is effective. These include
tasks that lend themselves to territorial solutions [12]. For ex-
ample, in controlling a bank of elevators in a building, each
agent’s role could be to serve a specific range of floors; in coor-
dinating agents to search the web for information, each agent
could cover a separate web region. They also apply to tasks
where the roles are based on expertise, and where the agents
react to the changing environment. For example, in deploying
robots to cover a physical space (e.g., clean a surface, mow the
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lawn, rake the leaves, etc.) each one can react to what others
have already done; in coordinating agents to construct an infor-
mation object such as a Wikipedia article, each agent can pro-
vide a different expert perspective, building on what is already
there in the article. In such tasks, communication may turn out
to be a source of noise that diverts teams from the most effec-
tive solution. Systematically identifying such tasks and applying
role-based cooperative coevolution to them constitutes a most
interesting direction for future work.

VIII. CONCLUSION

The experiments reported in this paper showed that co-
evolving several autonomous, cooperating neural networks
to control a team of agents is more efficient and robust than
evolving a single centralized controller. They also showed that
Multiagent ESP is an efficient and natural method for imple-
menting such multiagent cooperative coevolution. Furthermore,
a class of tasks was identified, called role-based cooperative
tasks, where communication is not necessary for success, and
may actually make evolution less effective. Instead, a team of
noncommunicating agents can be evolved to utilize stigmergic
coordination to solve the task more efficiently and robustly.
This class is likely to include interesting real-world tasks. Rec-
ognizing such tasks and applying the cooperative coevolution
approach to them, as well as studying the limits of stigmergic
coordination in dealing with novel and changing environments,
are the main directions of future work in this area.
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