
CS43: Computer Networks
Reliable Data Transfer

Kevin Webb

Swarthmore College

October 5, 2017

Agenda

• Today: General principles of reliability

• Next time: details of one concrete, very
popular protocol: TCP

The Two Generals Problem

• Two army divisions (blue) surround enemy (red)
– Each division led by a general

– Both must agree when to simultaneously attack

– If either side attacks alone, defeat

• Generals can only communicate via messengers
– Messengers may get captured (unreliable channel)

The Two Generals Problem

• How to coordinate?

– Send messenger: “Attack at dawn”

– What if messenger doesn’t make it?

The Two Generals Problem

• How to be sure messenger made it?

– Send acknowledgment: “I delivered message”

In the “two generals problem”, can
the two armies reliably coordinate
their attack?

• A. Yes (explain how)

• B. No (explain why not)

The Two Generals Problem

• Result

– Can’t create perfect channel out of faulty one

– Can only increase probability of success

Give up? No way!

• As humans, we like to face difficult problems.

– We can’t control oceans, but we can build canals

– We can’t fly, but we’ve landed on the moon

– We just need engineering!

(Unsinkable)

Engineering

• Concerns

– Message corruption

– Message duplication

– Message loss

– Message reordering

– Performance

• Our toolbox

– Checksums

– Timeouts

– Acks & Nacks

– Sequence numbering

– Pipelining

Engineering

• Concerns

– Message corruption

– Message duplication

– Message loss

– Message reordering

– Performance

• Our toolbox

– Checksums

– Timeouts

– Acks & Nacks

– Sequence numbering

– Pipelining

We use these to build Automatic Repeat Request (ARQ) protocols.

(We’ll briefly talk about alternatives at the end.)

Automatic Repeat Request (ARQ)

• Intuitively, ARQ protocols act like you would
when using a cell phone with bad reception.

– Message garbled? Ask to repeat.

– Didn’t hear a response? Speak again.

• Refer to book for building state machines.

– We’ll look at TCP’s states soon

ARQ Broad Classifications

1. Stop-and-wait

Stop and Wait

Sender Receiver

T
im

e

…

Corruption?

• Error detection mechanism: checksum

– Data good – receiver sends back ACK

– Data corrupt – receiver sends back NACK

Sender Receiver

T
im

e

Could we do this with just ACKs or just
NACKs?

• Error detection mechanism: checksum

– Data good – receiver sends back ACK

– Data corrupt – receiver sends back NACK

Sender Receiver

T
im

e

A. No, we need them both.

B. Yes, we could do without one
of them, but we’d need some
other mechanism.

C. Yes, we could get by without
one of them.

Could we do this with just ACKs or just
NACKs?

Sender Receiver

T
im

e

A. No, we need them both.

B. Yes, we could do without one
of them, but we’d need some
other mechanism.

C. Yes, we could get by without
one of them.

With only ACK, we could get by with a timeout.

With only NACK, we couldn’t advance (no good).

Timeouts

• Sender starts a clock. If no response, retry.

• Probably not a great idea for handling corruption,
but it works.

Sender Receiver

T
im

e

T
im

eo
u

t

T
im

e
o

u
t

Sender Receiver

T
im

eo
u

t

Corruption? Send no response.

Timeouts and Losses

• Timeouts help us handle message losses too!

Sender Receiver

T
im

e

T
im

eo
u

t

T
im

e
o

u
t

T

Sender Receiver

im
eo

u
t

Adding timeouts might create new problems
for us to worry about. How many? Examples?

A. No new problems (why not?)

B. One new problem (what is it?)

C. Two new problems (what are they?)

D. More than two new problems (what are they?)

Sender Receiver

T
im

e

T
im

eo
u

t

T
im

eo
u

t
T

Sender Receiver

im
eo

u
t

Sequence Numbering

Sender

• Add a monotonically
increasing label to each msg

Receiver

• Ignore messages with
numbers we’ve seen before

• When pipelining (a few
slides from now)
– Detect gaps in the sequence

(e.g., 1,2,4,5)

123

Sender Receiver

Suppose we had a modest 8 Mbps (one
megabyte per second) link. Our RTT is 100 ms,
and we send 1024-byte (1K) segments. What is

our link utilization with a stop and wait protocol?

A. < 0.1 %

B. ≈ 0.1 %

C. ≈ 1 %

D. 1-10 %

E. > 10 %

Pipelined Transmission

• Keep multiple segments “in flight”
– Allows sender to make efficient use of the link

– Sequence numbers ensure receiver can distinguish segments

– We’ll talk about “how many” next time (windowing).

Sender Receiver Sender Receiver

Now what?

What should the sender do here?

A. Start sending all data again from 0.

B. Start sending all data again from 2.

C. Resend just 2, then continue with 4 afterwards.

Sender Receiver

Now what?

What information does the
sender need to make that
decision?

What is required by either party
to keep track?

ARQ Broad Classifications

1. Stop-and-wait

2. Go-back-N

Go-Back-N

• Retransmit from point of loss

– Segments between loss event
and retransmission are ignored

– “Go-back-N” if a timeout event
occurs

• Fast retransmit

– Don’t wait for timeout if we get
a duplicate ACK

Sender Receiver

T
im

eo
u

t

Go-Back-N

• Retransmit from point of loss

– Segments between loss event
and retransmission are ignored

– “Go-back-N” if a timeout event
occurs

• Fast retransmit

– Don’t wait for timeout if we get
N duplicate ACKs

Sender Receiver

T
im

eo
u

t

ARQ Broad Classifications

1. Stop-and-wait

2. Go-back-N

3. Selective repeat

• a.k.a selective reject, selective acknowledgement

Selective Repeat

• Receiver ACKs each segment
individually (not cumulative)

• Sender only resends those
not ACKed

• Requires extra buffering and
state on the receiver

Sender Receiver

T
im

eo
u

t

ARQ Alternatives

• Can’t afford the RTT’s or timeouts?

• When?
– Broadcasting, with lots of receivers
– Very lossy or long-delay channels (e.g., space)

• Use redundancy – send more data
– Simple form: send the same message N times
– More efficient: use “erasure coding”

• For example, encode your data in 10 pieces such that the
receiver can piece it together with any subset of size 8.

