CS 31: Intro to Systems Binary Arithmetic

Kevin Webb

Swarthmore College
 September 11, 2018

Reading Quiz

Unsigned Integers

- Suppose we had one byte
- Can represent 2^{8} (256) values
- If unsigned (strictly non-negative): 0-255
$252=11111100$
$253=11111101$
$254=11111110$
$255=11111111$

Traditional number line:
Addition \longrightarrow

Unsigned Integers

- Suppose we had one byte
- Can represent 2^{8} (256) values
- If unsigned (strictly non-negative): 0-255
$252=11111100$
$253=11111101$
$254=11111110$
Car odometer "rolls over".
$255=11111111$
What if we add one more?

Unsigned Integers

- Suppose we had one byte
- Can represent 2^{8} (256) values
- If unsigned (strictly non-negative): 0-255
$252=11111100$
$253=11111101$
$254=11111110$
$255=11111111$
What if we add one more?

Unsigned Addition (4-bit)

- Addition works like grade school addition:

$$
\begin{array}{r}
1 \\
0110 \\
+\quad 0100 \\
\hline 1010 \\
\hline 10
\end{array}
$$

Four bits give us range: 0-15

Unsigned Addition (4-bit)

- Addition works like grade school addition:

$$
\begin{aligned}
& 1 \\
& \begin{array}{r}
0110 \\
+\quad 0100 \\
\hline 1010 \\
\hline 10
\end{array} \\
& \begin{array}{r}
1100 \\
+1010 \\
\cline { 1 - 2 } 10110 \\
\begin{array}{l}
\text { carry out }
\end{array}
\end{array}
\end{aligned}
$$

Four bits give us range: 0-15
Overflow!

Suppose we want to support signed values too (positive and negative). Where should we put -1 and -127 on the circle? Why?

C: Put them somewhere else.

Signed Magnitude

- One bit (usually left-most) signals:
- 0 for positive
- 1 for negative

For one byte:

$$
1=00000001, \quad-1=10000001
$$

Pros: Negation is very simple!

Signed Magnitude

- One bit (usually left-most) signals:
- 0 for positive
- 1 for negative

For one byte:
$0=00000000$
What about 10000000?

Major con: Two ways to represent zero.

Two's Complement (signed)

- Borrow nice property from number line:

Only one instance of zero!
Implies: -1 and 1 on either side of it.

Two's Complement

- Borrow nice property from number line:

Two's Complement

- Only one value for zero
- With N bits, can represent the range:
- $-2^{\mathrm{N}-1}$ to $2^{\mathrm{N}-1}-1$
- First bit still designates positive (0) /negative (1)
- Negating a value is slightly more complicated:

$$
1=00000001, \quad-1=11111111
$$

From now on, unless we explicitly say otherwise, we'll assume all integers are stored using two's complement! This is the standard!

Two's Compliment

- Each two's compliment number is now:
$\left[-2^{n-1 *} d_{n-1}\right]+\left[2^{n-2 *} d_{n-2}\right]+\ldots+\left[2^{1 *} d_{1}\right]+\left[2^{0 *} d_{0}\right]$

Note the negative sign on just the first digit. This is why first digit tells us negative vs. positive.

If we interpret 11001 as a two's complement number, what is the value in decimal?

- Each two's compliment number is now: $\left[-2^{n-1 *} d_{n-1}\right]+\left[2^{n-2 *} d_{n-2}\right]+\ldots+\left[2^{1 *} d_{1}\right]+\left[2^{0 *} d_{0}\right]$
A. -2
B. -7
C. -9
D. -25

"If we interpret..."

- What is the decimal value of 1100 ?
- ...as unsigned, 4-bit value: 12 (\%u)
- ...as signed (two's comp), 4-bit value: -4 (\%d)
- ...as an 8-bit value: 12
(i.e., 00001100)

Two's Complement Negation

- To negate a value x, we want to find y such that $x+y=0$.
- For N bits, $\mathrm{y}=2^{\mathrm{N}}-\mathrm{x}$

Negation Example (8 bits)

- For N bits, $y=2^{N}-x$
- Negate 00000010 (2)
- $2^{8}-2=256-2=254$
- Our wheel only goes to 127 !
- Put -2 where 254 would be if wheel was unsigned.
- 254 in binary is 11111110

Given 11111110, it's 254 if interpreted as
-128 unsigned and -2 interpreted as signed.

Negation Shortcut

- A much easier, faster way to negate:
- Flip the bits (0's become 1's, 1's become 0's)
- Add 1
- Negate 00101110 (46)
- $2^{8}-46=256-46=210$
- 210 in binary is 11010010

Addition \& Subtraction

- Addition is the same as for unsigned
- One exception: different rules for overflow
- Can use the same hardware for both
- Subtraction is the same operation as addition
- Just need to negate the second operand...
- 6-7 = $6+(-7)=6+(\sim 7+1)$
- ~7 is shorthand for "flip the bits of 7"

Subtraction Hardware

Negate and add 1 to second operand:
Can use the same circuit for add and subtract:
$6-7=6+\sim 7+1$

By switching to two's complement, have we solved this value "rolling over" (overflow) problem?

A. Yes, it's gone.
B. Nope, it's still there.
C. It's even worse now.

-128
This is an issue we need to be aware of

Overflow, Revisited

If we add a positive number and a negative number, will we have overflow? (Assume they are the same \# of bits)
A. Always
B. Sometimes
C. Never

-128

Signed Overflow

- Overflow: IFF the sign bits of operands are the same, but the sign bit of result is different.
- Not enough bits to store result!

Signed addition (and subtraction):

$2+-1=1$	$2+-2=0$	$2+-4=-2$
0010	$\mathbf{0 0 1 0}$	$\mathbf{0 0 1 0}$
$\frac{+\mathbf{1 1 1 1}}{10001}$	$\frac{+\mathbf{1 1 1 0}}{0000}$	$\frac{+\mathbf{1 1 0 0}}{1110}$

No chance of overflow here - signs
of operands are different!

Signed Overflow

- Overflow: IFF the sign bits of operands are the same, but the sign bit of result is different.
- Not enough bits to store result!

Signed addition (and subtraction):

Overflow here! Operand signs are the same, and they don't match output sign!

Overflow Rules

- Signed:
- The sign bits of operands are the same, but the sign bit of result is different.
- Can we formalize unsigned overflow?
- Need to include subtraction too, skipped it before.

Recall Subtraction Hardware

Negate and add 1 to second operand:
Can use the same circuit for add and subtract:
$6-7==6+\sim 7+1$
input 1 ------------------------------>
input 2 --> possible bit flipper --> ADD CIRCUIT ---> result possible +1 input-------->

Let's call this +1 input: "Carry in"

How many of these unsigned operations have overflowed?

4 bit unsigned values (range 0 to 15):

Addition (carry-in = 0)				$\begin{gathered} \text { carry-in } \\ \downarrow \end{gathered}$	carry-out	
$9+11$	$=$	1001	1011	$+0=$	1	0100
$9+6$	$=$	1001	0110	$+0=$	0	1111
$3+6$	=	0011	0110	$+0=$	0	1001

$$
\begin{aligned}
& \text { Subtraction (carry-in = 1) } \\
& 6-3 \\
& 3-6=0110+1100+1=10011 \\
& 3-10011+\underset{(-6)}{(-3)}+10001
\end{aligned}
$$

A. 1
B. 2
C. 3
D. 4
E. 5

How many of these unsigned operations have overflowed?

Interpret these as 4 -bit unsigned values (range 0 to 15):

Addition (carry-in $=0$)		$\begin{gathered} \text { carry-in } \\ \downarrow \end{gathered}$				
$9+11$	011	$+0=$		0100	$=$	4
$9+6$	110	$+0=$	0	1111	$=$	15
$3+6$	110	$+0=$	0	1001	$=$	

$$
\begin{aligned}
& \text { Subtraction (carry-in }=1) \\
& 6-3^{2}=0110+1100+1=10011=3 \\
& 3-6=0011+1010+1=01101=13
\end{aligned}
$$

A. 1
B. 2

Pattern?
C. 3
D. 4
E. 5

Overflow Rule Summary

- Signed overflow:
- The sign bits of operands are the same, but the sign bit of result is different.
- Unsigned: overflow
- The carry-in bit is different from the carry-out.

$C_{\text {in }}$	C $_{\text {out }}$	$\mathrm{C}_{\text {in }}$ XOR $C_{\text {out }}$
0	0	0
0	1	1
1	0	1
1	1	0

Suppose I have an 8-bit value, 00010110 (22), and I want to add it to a signed four-bit value, 1011 (-5). How should we represent the four-bit value?
A. 1101 (don't change it)
B. 00001101 (pad the beginning with 0 's)
C. 11111011 (pad the beginning with 1's)
D. Represent it some other way.

Sign Extension

- When combining signed values of different sizes, expand the smaller to equivalent larger size:

```
char }\textrm{y}=2,\textrm{x}=-13\mathrm{ ;
```

short $z=10 ;$

$$
z=z+y ;
$$

$$
z=z+x
$$

0000000000001010	
+	00000010
0000000000000010	

```
0000000000000101
+ 11110011
1111111111110011
```

Fill in high-order bits with sign-bit value to get same numeric value in larger number of bytes.

Let's verify that this works

4 -bit signed value, sign extend to 8 -bits, is it the same value?

0111 ---> 00000111 obviously still 7
1010 ----> 11111010 is this still -6?
$-128+64+32+16+8+0+2+0=-6$ yes!

Operations on Bits

- For these, doesn't matter how the bits are interpreted (signed vs. unsigned)
- Bit-wise operators (AND, OR, NOT, XOR)
- Bit shifting

Bit-wise Operators

- bit operands, bit result (interpret as you please)

More Operations on Bits

- Bit-shift operators: << left shift, >> right shift

```
01010101 << 2 is 01010100
    2 high-order bits shifted out
    2 ~ l o w - o r d e r ~ b i t s ~ f i l l e d ~ w i t h ~ 0 ~
01101010 << 4 is 10100000
0 1 0 1 0 1 0 1 ~ \gg ~ 2 ~ i s ~ 0 0 0 1 0 1 0 1
01101010 >> 4 is 00000110
1 0 1 0 1 1 0 0 ~ \gg ~ 2 ~ i s ~ 0 0 1 0 1 0 1 1 ~ ( l o g i c a l ~ s h i f t )
or 11101011 (arithmetic shift)
```

Arithmetic right shift: fills high-order bits w/sign bit C automatically decides which to use based on type: signed: arithmetic, unsigned: logical

Up Next

- C programming

