CS 31: Intro to Systems Binary Representation

Kevin Webb

Swarthmore College
 September 6, 2018

Reading Quiz

Announcements

- Sign up for Piazza!
- Let me know about exam conflicts!
- Register your clicker (clarification on Piazza)!

Abstraction

Today

- Number systems and conversion
- Data types and storage:
- Sizes
- Representation
- Signedness

Data Storage

- Lots of technologies out there:
- Magnetic (hard drive, floppy disk)
- Optical (CD / DVD / Blu-Ray)
- Electronic (RAM, registers, ...)
- Focus on electronic for now
- We'll see (and build) digital circuits soon
- Relatively easy to differentiate two states
- Voltage present
- Voltage absent

Bits and Bytes

- Bit: a 0 or 1 value (binary)
- HW represents as two different voltages
- 1: the presence of voltage (high voltage)
- 0 : the absence of voltage (low voltage)
- Byte: 8 bits, the smallest addressable unit $\begin{array}{ccccc}\text { Memory: } & 01010101 & 10101010 & 00001111 & \ldots \\ \text { (address) } & {[0]} & {[1]} & {[2]} & \ldots\end{array}$
- Other names:
- 4 bits: Nibble
- "Word": Depends on system, often 4 bytes
- One bit: two values (0 or 1)
- Two bits: four values (00, 01, 10, or 11)
- Three bits: eight values (000, 001, ..., 110, 111)

Discussion question

- Green border
- Recall the sequence
- Answer individually (room quiet)
- Discuss in your group (room loud)
- Answer as a group
- Class-wide discussion

How many unique values can we

 represent with 9 bits? Why?- One bit: two values (0 or 1)
- Two bits: four values (00, 01, 10, or 11)
- Three bits: eight values (000, 001, ..., 110, 111)
A. 18
B. 81
C. 256
D. 512
E. Some other number of values.

How many values?

1 bit:
0 1

2 bits:

$$
00
$$

01
10
11

3 bits: 000

4 bits: $\quad \begin{array}{llllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & \\ 0 & 16 & \text { values } \\ & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & \\ \end{array}$

$$
\begin{aligned}
& 1000 \quad 1001 \quad 1010 \quad 1011 \\
& 1100 \quad 11011110 \quad 1111
\end{aligned}
$$

N bits: $\quad 2^{N}$ values

C types and their (typical!) sizes

- 1 byte: char, unsigned char
- 2 bytes: short, unsigned short
- 4 bytes: int, unsigned int, float
- 8 bytes: long long, unsigned long long, double
- 4 or 8 bytes: long, unsigned long

```
unsigned long v1;
    short sl;
    long long ll;
    printf("%lu %lu %lu\n", sizeof(v1), sizeof(sl),
    sizeof(ll)); // prints out number of bytes
```

How do we use this storage space (bits) to represent a value?

Let's start with what we know...

- Decimal number system (Base 10)
- Sequence of digits in range [0, 9]

64025

Digit \#4
Digit \#0

What is the significance of the $\mathrm{N}^{\text {th }}$ digit number in this number system? What does it contribute to the overall value?

64025

Digit \#4 Digit \#0
d_{4}
d_{0}
A. $d_{N} * 1$
B. $\mathrm{d}_{\mathrm{N}} * 10$
C. $d_{N} * 10^{N}$
D. $d_{N}{ }^{*} N^{10}$

Consider the meaning of d_{3} (the value 4) above.
What is it contributing to the total value?

Decimal: Base 10

- Favored by humans...
- A number, written as the sequence of digits $d_{n} d_{n}$. ${ }_{1} \ldots \mathrm{~d}_{2} \mathrm{~d}_{1} \mathrm{~d}_{0}$ where d is in $\{0,1,2,3,4,5,6,7,8,9\}$, represents the value:
$\left[d_{n} * 10^{n}\right]+\left[d_{n-1} * 10^{n-1}\right]+\ldots+\left[d_{2} * 10^{2}\right]+\left[d_{1} * 10^{1}\right]+\left[d_{0} * 10^{0}\right]$
$64025=$
$6 * 10^{4}+4 * 10^{3}+0 * 10^{2}+2 * 10^{1}+5 * 10^{0}$
$60000+4000+0+20+5$

Generalizing

- The meaning of a digit depends on its position in a number.
- A number, written as the sequence of digits $d_{n} d_{n-1} \ldots d_{2} d_{1} d_{0}$ in base b represents the value:

$$
\left[d_{n} * b^{n}\right]+\left[d_{n-1} * b^{n-1}\right]+\ldots+\left[d_{2} * b^{2}\right]+\left[d_{1} * b^{1}\right]+\left[d_{0} * b^{0}\right]
$$

Binary: Base 2

- Used by computers to store digital values.
- Indicated by prefixing number with $\mathbf{0 b}$
- A number, written as the sequence of digits $d_{n} d_{n-1} \ldots d_{2} d_{1} d_{0}$ where d is in $\{0,1\}$, represents the value:

$$
\left[d_{n} * 2^{n}\right]+\left[d_{n-1} * 2^{n-1}\right]+\ldots+\left[d_{2} * 2^{2}\right]+\left[d_{1} * 2^{1}\right]+\left[d_{0} * 2^{0}\right]
$$

What is the value of Ob110101 in decimal?

- A number, written as the sequence of digits $d_{n} d_{n}$. ${ }_{1} \ldots d_{2} d_{1} d_{0}$ where d is in $\{0,1\}$, represents the value:

$$
\left[d_{n} * 2^{n}\right]+\left[d_{n-1} * 2^{n-1}\right]+\ldots+\left[d_{2} * 2^{2}\right]+\left[d_{1} * 2^{1}\right]+\left[d_{0} * 2^{0}\right]
$$

A. 26
B. 53
C. 61
D. 106
E. 128

Other (common) number systems.

- Base 10: decimal
- Base 2: binary
- Base 16: hexadecimal
- Base 8: octal
- Base 64

Hexadecimal: Base 16

- Indicated by prefixing number with $\mathbf{0 x}$
- A number, written as the sequence of digits $d_{n} d_{n-1} \ldots d_{2} d_{1} d_{0}$ where d is in $\{0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F\}$, represents the value:

$$
\begin{aligned}
& {\left[d_{n} * 16^{n}\right]+\left[d_{n-1} * 16^{n-1}\right]+\ldots+} \\
& \quad\left[d_{2} * 16^{2}\right]+\left[d_{1} * 16^{1}\right]+\left[d_{0} * 16^{0}\right]
\end{aligned}
$$

What is the value of $0 \times 1 B 7$ in decimal?

A. 397
$16^{2}=256$
B. 409
C. 419
D. 437
E. 439

Important Point...

- You can represent the same value in a variety of number systems / bases.
- It's all stored as binary in the computer.
- Presence/absence of voltage.

Other (common) number systems.

- Base 2: How data is stored in hardware.
- Base 8: Used to represent file permissions.
- Base 10: Preferred by people.
- Base 16: Convenient for representing memory addresses.
- Base 64: Commonly used on the Internet, (e.g. email attachments).

Hexadecimal: Base 16

- Fewer digits to represent same value
- Same amount of information!
- Like binary, base is power of 2
- Each digit is a "nibble", or half a byte.

Each hex digit is a "nibble"

- One hex digit: 16 possible values (0-9, A-F)
- $16=2^{4}$, so each hex digit has exactly four bits worth of information.
- We can map each hex digit to a four-bit binary value. (helps for converting between bases)

Each hex digit is a "nibble"

Example value: 0x1B7

Four-bit value: 1
Four-bit value: B (decimal 11)
Four-bit value: 7

In binary: 000110110111

$$
\begin{array}{lll}
1 & \text { B } & 7
\end{array}
$$

Converting Decimal -> Binary

- Two methods:
- division by two remainder
- powers of two and subtraction

Method 1: decimal value D, binary result b (b_{i} is ith digit):
$\mathrm{i}=0$
while ($\mathrm{D}>0$)
if D is odd set b_{i} to 1
if D is even
set b_{i} to 0
i++
$D=D / 2$
idea:
$\mathrm{D}=\mathrm{b}$

```
example: \(D=105\)
```

$a 0=1$

Method 1: decimal value D, binary result b (b_{i} is ith digit):
$\mathrm{i}=0$
while ($\mathrm{D}>0$)
if D is odd set b_{i} to 1
if D is even
set b_{i} to 0
i++
$D=D / 2$
idea:

$$
\begin{aligned}
& \mathrm{D}=\mathrm{b} \\
& \mathrm{D} / 2=\mathrm{b} / 2
\end{aligned}
$$

```
example: D = 105
    D = 52
```

$$
\begin{aligned}
& \mathrm{a} 0=1 \\
& \mathrm{a} 1=0
\end{aligned}
$$

Method 1: decimal value D, binary result b (b_{i} is ith digit):

$$
i=0
$$

while ($\mathrm{D}>0$)
if D is odd
set b_{i} to 1
if D is even
set b_{i} to 0
i++
$D=D / 2$
idea:

$$
\begin{aligned}
& \mathrm{D}=\mathrm{b} \\
& \mathrm{D} / 2=\mathrm{b} / 2 \\
& 0=0
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{a} 0=1 \\
& \mathrm{a} 1=0 \\
& \mathrm{a} 2=0 \\
& \mathrm{a} 3=1 \\
& \mathrm{a} 4=0 \\
& \mathrm{a} 5=1 \\
& \mathrm{a} 6=1 \\
& \mathrm{a} 7=0
\end{aligned}
$$

Method 2

- $2^{0}=1, \quad 2^{1}=2, \quad 2^{2}=4, \quad 2^{3}=8, \quad 2^{4}=16$,
$2^{5}=32$,
$2^{6}=64$,
$2^{7}=128$
- To convert 105:
- Find largest power of two that's less than 105 (64)
- Subtract $64(105-64=41)$, put a 1 in d_{6}
- Subtract 32 (41-32 = 9), put a 1 in d_{5}
- Skip 16, it's larger than 9, put a 0 in d_{4}
- Subtract $8(9-8=1)$, put a 1 in d_{3}
- Skip 4 and 2, put a 0 in d_{2} and d_{1}
- Subtract $1(1-1=\underline{0})$, put a 1 in d_{0} (Done)

$$
\overline{d_{6}} \overline{d_{5}} \overline{d_{4}} \overline{d_{3}} \overline{d_{2}} \overline{d_{1}} \overline{d_{0}}
$$

What is the value of 357 in binary?

A. 101100011
B. 101100101
C. 101101001
D. 101110101
E. 110100101
$\begin{array}{lll}2^{0}=1, & 2^{1}=2, \quad 2^{2}=4, \quad 2^{3}=8, & 2^{4}=16, \\ 2^{5}=32, & 2^{6}=64, \quad 2^{7}=128, & 2^{8}=256\end{array}$

So far: Unsigned Integers

- With N bits, can represent values: 0 to $2^{n}-1$
- We can always add 0's to the front of a number without changing it:
$10110=\underline{010110}=\underline{000} 10110=\underline{0000010110}$
- 1 byte: char, unsigned char
- 2 bytes: short, unsigned short
- 4 bytes: int, unsigned int, float
- 8 bytes: long long, unsigned long long, double
- 4 or 8 bytes: long, unsigned long

Representing Signed Values

- One option (used for floats, NOT integers)
- Let the first bit represent the sign
- 0 means positive
- 1 means negative
- For example:
- 0101 -> 5
- 1101 -> -5
- Problem with this scheme?

Floating Point Representation

1 bit for sign sign | exponent | fraction |
8 bits for exponent
23 bits for precision

$$
\text { value }=(-1)^{\text {sign }} * 1 . \text { fraction } * 2^{\text {(exponent-127) }}
$$

let's just plug in some values and try it out

$$
\begin{aligned}
0 x 40 a c 49 b a: & 010000001 \quad \begin{array}{c}
01011000100100110111010 \\
\text { sign }
\end{array}=0 \text { exp }=129 \quad \text { fraction }=2902458 \\
& =1 * 1.2902458 * 2^{2}=5.16098
\end{aligned}
$$

I don't expect you to memorize this

Up Next: Binary Arithmetic

