
1

Active Visual Scaffolding
Charles F. Kelemen and Eugene R. Turk

Swarthmore College

I. Introduction

Reading code and viewing algorithm animations are helpful in understanding data
structures and algorithms. However, neither of these is a substitute for writing
code to implement an algorithm or proving theorems about algorithms. Watching
a visualization is a fairly passive process. Most visualization systems do not allow
students to experiment with changing the underlying code and seeing an updated
visualization. Interactive debuggers allow students to follow the execution of
their own code but often at too low a level of abstraction with too much detail.

We have developed a prototype of a Java graphical infrastructure that will allow
students to follow the execution of their code at a level of abstraction somewhere
between that offered by a typical algorithm animation and a typical interactive
debugger. This infrastructure requires a more active role on the part of the student
than either an interactive debugger or an algorithm animation, potentially resulting
in a greater understanding of the underlying concepts of a student’s program. It is
easy enough to master that it will not require the removal of any content from a
first year CS course, which would be the natural place for a project like this at this
stage in its evolution. It is our hope that first year students will enjoy using this
graphical tool to reveal information about their programs as they run them, and
thus speed the debugging process, in addition to providing useful information
about the actual way in which data in manipulated “behind the scenes.”
Ultimately, we plan on extending the ideas of this prototype in such a way as to
accommodate more complex data structures than the initial one we chose, and also
to make it so that students will be able to create and use their own library of
graphical functions that interface with our infrastructure to animate their
algorithms in a more customizable manner.

II. Background

Much work has been done on Software Visualization [38]. John Stasko has
experimented with providing students with visualization software and having
students write code for algorithm execution and visualization using his graphics
libraries [37,39]. Students must learn commands that are outside their
programming language environment and use a package that is a bit like a 'black

2

box' in order to see these animations. Additionally, changes to source code will
not be reflected in visualizations without explicit changes to the visualization
calls. What we have done draws heavily upon Stasko's pioneering work.
However, by using Java as the student programming language and the
visualization language, we hope that students will be starting with an 'opaque box'
that will become a 'clear box' by the end of the course. By putting our graphical
interface at the disposal of the student and leaving the actual creation of the
custom visualization methods open, the student will have to understand the
visualization process on an increasingly intimate level the farther he or she
progresses in writing complex algorithms. In leaving the visualization program
entirely behind the scenes as Stasko and others have done, students can never
achieve the degree of interactivity with their visualizations required for some of
the more complex data structures and algorithms that are taught in CS courses. In
using our infrastructure, students not only gain a tool with which to debug their
programs and see their algorithms “in action,” they ultimately gain an
understanding of the algorithm visualization process itself through constantly
interacting with the interface we provide.

In "The Mythical Man-Month", Frederick Brooks says, "Build plenty of
Scaffolding. By scaffolding I mean all programs and data built for debugging
purposes but never intended to be in the final product." [10] One extremely
effective kind of scaffolding is the “extra” print statement. Consider the following
advice to students:

When given a problem for computer solution, many students (especially
smart students) rush to the computer and start entering code. They write
the whole program; then try to compile and run the program. This works
for easy exercises at the beginning of a CS1 course. For some students it
may even work for programs that require 50-100 lines of code. But at
some point it fails for all. At that point (let's say a program of 100 lines of
code) programming can become very frustrating. With 100 lines of code,
even syntax errors may be difficult to find. But the more insidious logical
errors could be anywhere in 100 lines. It becomes very frustrating to
think you have discovered an error only to have the program fail over and
over.

Do not code programs in one step.

The first thing to do is think about the overall design of a solution away
from the keyboard. Consider both top-down and bottom-up design.
Once you know about object-oriented ideas, you should ask, "What are
reasonable objects?", "What kind of communication should take place

3

between objects?", "What should be public, private, protected?", "How
can I exploit inheritance?", "What are good superclasses?", etc. Once you
have an outline of the overall design, you can begin to think about coding.
You can code in small steps whether you choose to code in a top-down
manner (use stubs) or in a bottom up manner (use simple 'driver'
programs). Take many small steps compiling and testing at each step.
Each time a small step works you get a little Computer Science High
(these are absolutely legal everywhere). To avoid gigantic downers,
develop your programs in small steps so you get lots of highs.

Start with a very small (like 5-15 lines of code) program that you compile
and run. Then add at most 5-15 lines; compile debug and run. At each
iteration, be certain that your code so far is CORRECT. In order to
accomplish this you need to add 'scaffolding'. This is code that may not
appear in the final product, but allows you to be certain that your current
code is correct so far. Figuring out good scaffolding goes hand in hand
with loop invariants and really understanding how your program works.
You should never have to spend hours until you get something to
compile. You should always have a program that is no more than 15 lines
different from your previous version (that you know runs perfectly and
that you understand). Then when you have an error in your latest
attempt, you can be pretty certain that your error is within 15 lines of
code.

When you get an error you must find out why? If your program won't
compile, try paying attention to the error messages (although they can
sometimes be misleading). If necessary 'comment out' part of your code
until you get something that does compile and then add things a bit at a
time. If the program does compile but does not run correctly, your
scaffolding should let you know where the problem occurs. If not, you
need to add better scaffolding. Understand what is wrong before you try
to fix it.

The above is extremely good advice. Some students take it but most do not. Extra
lines of output are just not very exciting to most students. On the other hand,
almost all students will work extremely hard on any assignment that uses graphics.
We want to exploit the student excitement associated with graphical output to
encourage them to include visual scaffolding in their program development.

4

III. Development

For this work we assume students will be programming in Java. Utilizing Java 2D
and Swing API’s, we created an initial visual scaffolding infrastructure so that
students will be able to think about issues of algorithm understanding and program
correctness through the use of visual scaffolding in code development.

As a first step in the much larger task of generating a full infrastructure for
students to use when displaying the majority of common algorithms and data
types, we chose to use an array data structure as our testing grounds for the
visualization concepts we wanted to illustrate. Arrays can be illustrated in real
time through a very minimal addition of code in a student’s program. There are
drawbacks and benefits to this approach. Although the overhead for using the
visualization is fairly minor, it masks the actual creation of the graphical object,
which would certainly be useful for students to ultimately understand. Dealing
with the sticky issue of to what degree students should be involved in the
visualization process is truly challenging. It is difficult to know whether
providing pre-written animation methods is a more useful tool than having
students write them individually to fit their needs. For example, take a method
that highlights two elements in the array and changes the background color to
something other than the default. Even this very simple method may not have the
flexibility that a particular student might need when attempting to debug his or her
program. With that in mind, it may be a better approach to give the students more
basic tools and have them write the animation functions themselves. At this early
stage in development, however, it seemed to be more prudent to just write more
complex animation methods that students could use in a smaller set of
circumstances. Increasing the level of student involvement in the writing of their
own methods that interface our GUI will certainly occur alongside the increase in
complexity of their programs in CS 1. When students are first learning how to use
arrays, however, such a level of interactivity is unnecessary and counterproductive
to the students’ understanding of algorithms and data structures.

After declaring a new visualization variable and constructing a visualization
object, the student must initialize the array visualization so that it correctly points
at the student’s data array. Our array GUI shows the contents of each array
element through the simple use of the common “toString” method that each object
in the student’s array will possess. If a student wants different aspects of an
object’s data displayed, he or she merely needs to override or replace the standard
toString method with a more appropriate one for the task at hand. One or two
calls to an update method at appropriate places within an algorithm that modifies
the student’s array will enable the visualization to change in “real” time as the

5

program executes. In order to avoid the too-rapid display of change in a student’s
visualization, the array GUI has a built-in slidebar that regulates the rate at which
the student’s program executes. The benefits of this method of visualization are
that any errors in a student’s algorithm are reflected in the visualization. Should a
student make a logical misstep in the writing of a given algorithm, the animation
will show a corresponding error as it occurs in the execution of the program. By
building visual scaffolding into the objects and container operations, changes in
source code will often be reflected in the visualization without requiring new calls
to the visualization infrastructure.

IV. Results

A sample use of this initial array GUI might be as follows. If a student were
asked to implement a selection sort algorithm on a randomly generated array of
Integer objects, he or she could additionally be instructed to utilize our graphical
infrastructure for debugging and general educational purposes. Figure 1 shows
the code that a student might write for such an assignment. “window” is the array
GUI object. Note that the only calls to the “window” object within the student’s
algorithm occur in the line that compares two objects (the method “lessthan”
highlights the two elements of the array at the indices specified, then returns
whether the value stored at the first is less than the value stored at the second), and
at the end of the principal loop (“window.redraw”).

6

import java.util.Random;
public class StudentArray {

 static int arraysize = 10;

 static public Object[] generateArray(int size) {
 Object[] temp = new Object[size];
 Random generator = new Random();
 for (int i = 0; i < size; i++) {
 temp[i] = new Integer(generator.nextInt(100));
 }
 return temp;
 }

 public static void main(String args[]) {
 Object[] testArray = new Object[arraysize];
 Object temp = null;
 int lowpoint, left;

 testArray = generateArray(arraysize);

 ArrayGUI window = new ArrayGUI();
 window.inAnApplet = false;
 window.setArraySize(arraysize);
 window.setArray(testArray);
 window.initArray();
 window.pack();
 window.setVisible(true);

 lowpoint = left = 0;
 while (left != arraysize) {
 for (int i = left + 1; i < arraysize; i++) {
 if (window.lessthan(i, lowpoint)) {
 lowpoint = i;}
 }
 temp = testArray[lowpoint];
 testArray[lowpoint] = testArray[left];
 testArray[left] = temp;
 left++;
 lowpoint = left;
 window.redraw();
 }
 }
}

Figure 1

7

The resulting initial and final states of the GUI when this code is executed are
shown in figures 2 and 3, respectively.

Figure 2

The GUI highlights pairs of array elements as they are compared at a rate of speed
slow enough for the student to see what is occurring in his or her algorithm,
instead of having it execute too rapidly for any information to be gleaned. If there
are logic errors within the student’s algorithm, they should be fairly easily seen
within the animation.

Figure 3

8

V. Further Directions for Research

As stated above, our final plan is to create a sequence of exercises that lead
students to develop their own graphics library while learning basic CS principles.
We want the use of our tools to be so natural that their use will help in teaching
and illustrating first year topics and not require the removal of any topics.
Students will use their own library of graphical tools written through the help of
our graphical user interfaces to write code for algorithm execution and
visualization. Early in the process, students will be writing simple programs and
relatively simple visualizations will suffice. As students get more sophisticated,
the graphical interface will be able to accommodate that increase in complexity so
that with careful thought, students will be able to provide visual scaffolding that
will aid in understanding at higher levels of abstraction. Constructing the
visualization will force students to come to grips with both the forest and the trees.

Some infrastructure aspects of visualization (such as zooming in and out, handling
screen real estate, scaling, and handling the speed of the presentation) will be
supplied by us and revealed to students as they progress. A good bit of our work
will be designing and building this more complete infrastructure in such a way
that it can be understood and used by students early and without taking time away
from other important early topics. The existence of the Java 2D and Swing API’s
will allow us to provide this infrastructure at the source code level.

VI. Conclusion

Judicious use of visual scaffolding will permit students to think and see the
working of their programs at the level of their data structures and algorithms.
Single stepping will not be needed often. When it is necessary to examine the
program at the level of each line of code, visual scaffolding will work with and
help set the context for single stepping in an interactive debugger like JDB. It is
our hope that the graphical tools for visualization that each student develops in
conjunction with our infrastructure will be used as an understanding and
visualization aid in both first year courses and more advanced CS courses that the
student takes. Our task, then, is to expand on the encouraging results we have
obtained from implementing visual scaffolding for arrays to more complex data
structures. There will be greater complexity in this project as more complex the
data structures are represented. The underlying lessons we have learned from this
prototype, however, will continue to hold true.

9

References

1.Baecker, R. M. (1968). Experiments in On-Line Graphical Debugging:
The Interrogation of Complex Data Structures (Summary Only). In Proceedings of
First Hawaii International Conference on the System Sciences, (pp. 128-129).

2.Baecker, R. M. (1975). Two systems which produce animated
representations of the execution of computer programs. ACM SIGCSE Bulletin,
7: 158-167.

3.Baecker, R. M. & Buchanan, J. W. (1990). A Programmer's Interface: A
Visually Enhanced and Animated Programming Environment. In Proceedings of
the Twenty-Third Annual Hawaii International Conference on System Sciences.,
(pp. 531-540). New York: IEEE Computer Society Press.

4.Baeza-Yates, R., Jara, L., & Quezada, G. (1992). VCC: Automatic
Animation of C Programs. In Proceedings of COMPUGRAPHICS'92, (pp. 389-
397).

5.Bentley, J. L. & Kernighan, B. W. (1991a). A System for Algorithm
Animation. Computing Systems, 4(1): 5-30.

6.Bentley, J. L. & Kernighan, B. W. (1991b). A System for Algorithm
Animation (Tutorial and User Manual) (Computing Science Technical Report No.
132). AT&T Bell Laboratories, Murray Hill, New Jersey 07974.

7.Bentley, J. L. & Kernighan, B. W. (1992). ANIM. Murray Hill, NJ:
AT&T Bell Laboratories. a collection of ANSI C programs used to visualize
programs, runs on any UNIX computer. Available by anonymous ftp from
research.att.com in /netlib/research.

8.Bergin, J, Brodie, K, Goldweber, M, Jimenez-Peris, R, Khuri, S, Patino-
Martinez, M, McNally, M, Rodger, S, and Wilson, J, "An Overview of
Visualization and its Use and Design", ITiCSE '96, Sept. 96.

9. Boroni, Christopher M., Frances W. Goosey, Michael T. Grinder,
Jessica L. Lambert, and Rockford J. Ross. " Tying it All Together: Creating Self-
Contained, Animated, Interactive, Web-Based Resources for Computer Science
Education." Thirtieth SIGCSE Technical Symposium on Computer Science
Education, volume 31, number 1, March 1999, pages 7-11.

10

10.Brooks, Frederick, "The Mythical Man-Month" Addison-Wesley,
1975

11.Brown, Cynthia, Harriet J. Fell, Viera K. Proulx, & Richard Rasala,
Instructional Frameworks: Toolkits and Abstractions in Introductory Computer
Science, Proceedings of the 1993 Computer Science Conference, ACM Press,
February 1993, 195-200.

12.Brown, M. H. (1988a). Algorithm Animation. New York: MIT Press.

13.Brown, M. H. (1988b). Exploring Algorithms Using Balsa II. IEEE
Computer, 21(5): 14 36.

14.Brown, M. H. (1991). Zeus: A System for Algorithm Animation and
Multi-View Editing. In Proceedings of IEEE Workshop on Visual Languages, (pp.
4-9). New York: IEEE Computer Society Press.

15.Brown, M. H. & Sedgewick, R. (1985). Techniques for Algorithm
Animation. IEEE Software, 2(1): 28-39.

16.Byrne, Michael D, Catrambone, Richard and Stasko, John T.,
"Evaluating Animations as Student Aids in Learning Computer Algorithms,"
Computers & Education, Vol. 33, No. 4, 1999, pp. 253-278.

17.Byrne, Michael D, Catrambone, Richard and Stasko, John T., " Do
Algorithm Animations Aid Learning?", Graphics, Visualization, and Usability
Center, Georgia Institute of Technology, Atlanta, GA, Technical Report GIT-
GVU-96-18, August 1996.

18.Domingue, John, Paul Mulholland: Staging Software Visualizations on
the Web. VL 1997: 368-375

19.Domingue, John, Paul Mulholland: An Effective Web-based Software
Visualization Learning Environment. Journal of Visual Languages and Computing
9(5): 485-508 (1998)

20.Haajanen, J, M. Pesonius, Erkki Sutinen, Jorma Tarhio, T. Teräsvirta,
P. Vanninen: Animation of User Algorithms on the Web. VL 1997: 360-367

21.Kehoe, Colleen, Stasko, John and Taylor, Ashley " Rethinking the
Evaluation of Algorithm Animations as Learning Aids: An Observational Study",

11

Graphics, Visualization, and Usability Center, Georgia Institute of Technology,
Atlanta, GA, Technical Report GIT-GVU-99-10, March 1999.

22.Lahtinen, S.-P, Erkki Sutinen, Jorma Tarhio: Automated Animation of
Algorithms with Eliot. Journal of Visual Languages and Computing 9(3): 337-349
(1998)

23.Mukherjea, Sougata and Stasko, John T. , "Applying Algorithm
Animation Techniques for Program Tracing, Debugging, and Understanding",
Proceedings of the 15th International Conference on Software Engineering,
Baltimore, MD, May 1993, pp. 456-465.

24. Mukherjea, Sougata and Stasko, John T., "Toward Visual Debugging:
Integrating Algorithm Animation Capabilities within a Source Level Debugger",
ACM Transactions on Computer-Human Interaction, Vol. 1, No. 3, September
1994, pp. 215-244.

25.Myers, B. A. (1980). Displaying Data Structures for Interactive
Debugging (Technical Report No. CSL-80-7). Xerox PARC.

26.Myers, B. A. (1983). Incense: A System for Displaying Data
Structures. Computer Graphics, 17(3): 115-125.

27.Naps, Thomas L., Norton, Laura L., and Eagan, James R., "JHAVÉ --
An Environment to Actively Engage Students in Web-based Algorithm
Visualizations," in Proceedings of the SIGCSE Session, ACM Meetings (Austin,
Texas, March 2000).

28.Naps, Thomas L., "Algorithm Visualization on the World Wide Web -
the Difference Java Makes" in Proceedings of the Association for Computing
Machinery's SIGCSE/SIGCUE Conference on Integrating Technology into
Computer Science Education, Uppsala, Sweden, June, 1997

29.Naps, Thomas L., "Report of the Working Group on Using the World
Wide Web as the Delivery Mechanism for Interactive, Visualization-based
Instructional Modules" in Proceedings of the Association for Computing
Machinery's SIGCSE/SIGCUE Conference on Integrating Technology into
Computer Science Education, co-authored with Joe Bergin, Ricardo
Jimenez–Peris, Marta Patino Martinez, Myles McNally, Viera Proulx, Jorma
Tarhio, Uppsala, Sweden, June, 1997.

12

30.Naps, Thomas L. and Eric Bressler, " A multi-windowed environment
for simultaneous visualization of related algorithms on the World Wide Web," in
Proceedings of the SIGCSE Session, ACM Meetings (Atlanta, Georgia, February,
1998).

31.Naps, Thomas L., "A Java Visualizer Class: Incorporating Algorithm
Visualizations into Students' Programs," in Proceedings of the Association for
Computing Machinery's SIGCSE/SIGCUE Conference on Integrating Technology
into Computer Science Education, Dublin, Ireland, August, 1997

32.Pierson, W, and S. H. Rodger, Web-based Animation of Data
Structures Using JAWAA, Twenty-ninth SIGCSE Technical Symposium on
Computer Science Education, p. 267-271, 1998

33.Proulx, V, Fell, H, Rasala, R, and Brown, C, "Interactive Animations
in Computer Science", Proceedings Frontiers in Education '93.

34.Rasala, Richard, "Automatic Array Algorithm Animation in C++",
SIGCSE Bulletin, March 1999 257-260.

35.Rasala, Richard, "Toolkits in First Year Computer Science: A
Pedagogical Imperative", Proceeding of 31st SIGCSE, March 2000.

36.Rasala, Richard, Viera K. Proulx, & Harriet Fell, From Animation to
Analysis in Introductory Computer Science, SIGCSE Bulletin, March 1994, Vol
26(1), 61-65.

37.Stasko, J. T. (1990). Tango: A Framework and System for Algorithm
Animation. IEEE Computer, 23(9): 27-39.

38.[Stasko et al] "Software Visualization" John T. Stasko, John B.
Domingue, Marc H. Brown, and Blaine A. Price (eds.) MIT Press, 1998

39.Stasko, John T, "Using Student-Built Algorithm Animations as
Learning Aids", Proceedings of the ACM Technical Symposium on Computer
Science Education (SIGCSE '97), San Jose, CA, February 1997, pp. 25-29.

40.Wolz, U and Koffman, E, "SimpleIO: A Java Package for Novice
Interactive and Graphics Programming", Proceeding of ITiCSE 99, 139-142.

