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at Bowdoin College
October 28-31, 1999

Charles F. Kelemen (ed.), Owen Astrachan, Doug Baldwin,
Kim Bruce, Peter Henderson, Dale Skrien, Allen Tucker, and Charles Van Loan

This report focuses on the needs of computer science from the first two years of college
mathematics instruction. While the authors have all been involved in computer science curriculum
design in the past, this report does not represent the position of any official ACM or IEEE
sanctioned curriculum committee.

Our general conclusion is that undergraduate computer science majors need to
acquire mathematical maturity and skills, especially in discrete mathematics, early
in their college education. The following topics are likely to be used in the first
three courses for CS majors: logical reasoning, functions, relations, sets,
mathematical induction, combinatorics, finite probability, asymptotic notation,
recurrence/difference equations, graphs, trees, and number systems. Ultimately,
calculus, linear algebra, and statistics topics are also needed, but none earlier
than discrete mathematics. Thus, such a discrete mathematics course should be
offered in the first semester and the prerequisite expectations and conceptual level
should be the same as for the Calculus I course offered to mathematics and
science majors. Our detailed recommendations respond directly to the series of
questions of direct relevance to the CUPM Initiative posed by the Workshop
hosts .
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Students should be comfortable with abstract thinking, notation and its meaning.  They
should be able to generalize from examples and create examples of generalizations.  In order
to estimate the complexity of algorithms, they should have a feeling for functions that
represent different rates of growth (e.g., logarithmic, polynomial, exponential).  In order to
reason effectively about the complexity and correctness of algorithms, they should have
some facility with formal proofs, especially induction proofs.  The same kind of clear and
careful thinking and expression needed for a coherent mathematical argument is needed for
the design and effective implementation of a computer program [Ralston 84, Henderson 97].
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Students should be able to represent 'real-world' problem situations with discrete structures
such as arrays, linked lists, trees, finite graphs, other multi-linked structures, and matrices.
They should be able to develop and analyze algorithms that operate on these structures (e.g.,
[Cormen 90]).  They should understand what a mathematical model is and be able to relate
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mathematical models to real problem domains (e.g., [Wolz 94, Woodcock 88]).  General
problem solving strategies such as divide-and-conquer and backtracking strategies are also
essential.
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The first three courses for CS majors are typically an introduction to computer science (containing
a large amount of programming), a course in data structures and algorithms, and a course in
computer architecture/organization.  Some schools put computer architecture before data structures
and some do the opposite.  A few schools cover discrete mathematics topics before they do much
programming [e.g., Baldwin 92, Henderson 90].  The following topics are likely to be used in the
first three courses for CS majors: logical reasoning (propositions, DeMorgan’s laws, including
negation with quantifiers), functions, relations (equivalence relations and partitions), sets, notation2 3 4 5 6 6 7 8 9 5
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, mathematical induction (structural, strong and weak),

combinatorics, finite probability, asymptotic notation (e.g., O(n2), O(2n) ), recurrence/difference
equations, graphs and trees, and number systems.

Some examples:

Propositional logic and number systems
A student may have the following code in a program:

if ( (i > n)  &&  (a[i] != x) )   do thing1
else do thing2

After some analysis, it is discovered that thing1 is not necessary at all.  The student would like to
negate the condition of the if statement and do thing2 if the negated condition is true; an
application of deMorgan’s law in propositional logic.  This kind of change comes up often in the
first two CS courses.  Many students have great difficulty negating a compound logical expression
such as the one above.

Computer architecture is usually taught in the first two years of a computer science major.
Decimal, binary, and hexadecimal number systems are used extensively.  The use of logic
expressions and their circuits to realize adders, multiplexors, decoders, etc. are essential for this
course.  Fluency with the propositional calculus is thus an important prerequisite here too.

Beyond these two examples, a more extended discussion of the centrality of logic in computer
science is provided in [Meyers 90, Gries 96].

Growth of functions

In analyzing nested loops, the sumΣk

n

=1 k occurs often.  That this sum evaluates to

n(n+1)/2  and that as n gets large this sum is quite different from n is important.  The sum

Σ k

n

=11/k also appears often.  That this is approximately ln n is important.  In fact, the

notion that O(ln n) = O(log2 n) is also important.
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Use of recurrence, induction, and finite probabability
One of the best sorting algorithms is called quicksort.  One variant follows.

//Pre:   0 <= first <= last < MAXARRSIZE
//Post:  a[first..last] is in ascending order
void quicksort(IntArr a, int first, int last)
{ int pivotind; // pivot index before partitioning
  int partdiv; //partition division point after partitioning
  if ((last - first) > 0)    //there is something here to sort
  { pivotind = (first+last)/2;  //pivot on middle element
    partdiv = partition(a,first, last, pivotind);
    quicksort(a, first, partdiv-1); //sort left part
    quicksort(a, partdiv+1, last); //sort right part
  }  // end if
}  // end quicksort

partition is a function that returns an indexpartdiv and rearranges the elements of the
array a so that after the return from  partition we have
a[first..partdiv-1] <= a[partdiv] < a[partdiv+1..last]

In a separate argument, using loop invariants, one can prove that partition is correct.  Strong
induction is used to prove quicksort correct.  Attempting to prove an incorrectly formulated
algorithm correct is often the best way to find out what is wrong with it.

It can be shown that partition takes less than n 'element comparisons' to partition an array of n
elements.  Using this and assuming that partition always divides the array into equal portions, we
get the recurrence  T(n) < 2T(n/2) + n   where T(n) represents the number of 'element
comparisons' to quicksort an array of n elements.  If the initial ordering of the array is such that
partition divides the array into parts containing 0 and n-1 elements then the recurrence for
quicksort is  T(n) < T(n-1) + n .  The first case yields O(n log n) complexity, while the second
yields O(n2).  Being able to derive recurrences of this sort and to solve them is important in early
CS courses. Students should also be able to analyze the expected performance of quicksort.  If all
orderings of the initial array are equally likely, the expected performance is O(n log n) and the
constant hidden in the big-oh is small enough that quicksort is preferable to many other sorting
algorithms whose worst-case performance is O(n log n).  Thus, Probabilistic analysis is
important.

Binary search trees are important data structures covered in a second CS course.  They are most
easily defined using recursive definitions and most easily processed using recursive algorithms.
For example, an inorder traversal of a binary search tree is easily expressed recursively but
extremely difficult to code without using recursion.  Many algorithms on binary search trees
depend upon the height of the tree.  Results relating the height of the tree to the number of nodes
in the tree are most easily proved using induction.
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Mathematics in the rest of the CS curriculum
Many intermediate and advanced CS courses use mathematical topics that students hopefully
master in their first two years.

• Scientific computing and numerical analysis use differential and integral calculus,
multidimensional calculus, and linear algebra.

• Computer Graphics uses linear algebra (matrix algebra, change of coordinates), 3-
dimensional calculus, and topics from geometry.

• Theory of Computation and Algorithms courses use induction and diagonalization
proofs.  Counterexamples and proof by contradiction are important.

More advanced mathematical topics may also be used in select upper division CS courses.

• Transforms are used in speech understanding and synthesis algorithms.

• Wavelets are used in compression algorithms.

• Group and ring theory are used in encryption algorithms.

The Computing Sciences Accreditation Board  [CSAB 99] recommends the following for
undergraduate computer science majors: "The curriculum must include at least one-half year [4 or
5 courses] of mathematics. This material must include discrete mathematics, differential and
integral calculus, and probability and statistics, and may include additional areas such as linear
algebra, numerical analysis, combinatorics, and differential equations."  Similar recommendations
appear in the ACM/IEEE Curriculum 91 Report [ACM/IEEE 91] and the Liberal Arts Model
Curriculum [Walker 96, Gibbs 86], which are widely-used models for designing undergraduate
computer science major programs in the US.

The GRE in computer science [GRE 99] weights 25% on Theory and 15% on mathematical
background.  The Theory topics depend heavily on discrete mathematics topics. Topics listed
under mathematical background include:
• Discrete Structures (1. Mathematical Logic; 2. Elementary combinatorics, including graph

theory and counting arguments; 3. Elementary discrete mathematics including number theory,
discrete probability, recurrence relations);

• Numerical mathematics (1. Computer arithmetic including number representations, roundoff
errors, overflow and underflow; 2. Classical numerical algorithms; 3. Linear algebra).
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For the early CS courses, discrete mathematics topics take priority over calculus and linear
algebra [Ralston 84].  If these discrete mathematics topics are not covered in a first- or second-
semester mathematics course they must be introduced in the CS courses themselves.  This slows
down the CS course and probably leads to a more cursory treatment of the mathematics topics
than might be possible in a mathematics course.  Given the current difficulty in hiring CS faculty,
we suspect that most CS departments would welcome a freshman level discrete mathematics
course covering the topics needed for CS, but taught by the mathematics department.  In fact,
many CS departments consider these topics so important that they offer their own courses
covering them.  Some of these courses bear titles like "Discrete Structures" or "Computational
Structures." (E.g., see [Epp 95, Gersting 99, Rosen 99] for a sampling of contemporary discrete
mathematics texts.)
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We think both theoretical understanding and computational skill are important.  Computational
skill (in the sense of plug and chug) is less important than the ability to recognize when these
topics may be used productively in algorithmic problem solving and computational modeling.  On
the other hand, we would really like students to be able to formulate and complete induction
proofs.  If this is considered computational, then computational skill is very important.
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CS courses for humanities students do not require sophisticated mathematics. CS courses
specifically designed for business majors are well served by the business mathematics courses.
Some colleges and universities offer special CS courses for science and engineering majors.   These
students have such heavy mathematics and science requirements in the first two years that it is
probably not possible to require them to take a discrete mathematics course early.  Covering
some discrete mathematics topics (say induction and propositional logic) in Calculus I would be
helpful for these CS courses.  Ideally, for computer science majors, discrete mathematics should
be covered before Calculus.

Often the first two CS courses for CS majors are also taken by majors from mathematics, the
natural sciences, economics, social sciences, and others who want to gain a deeper mastery of this
important field. For many of these students, a first semester discrete mathematics course would
be of value.
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We support the goal of FITness (Fluency in Information Technology) promulgated in the NAS
report, "Being Fluent with Information Technology" [NAS 99].  The key idea is that students of
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all disciplines should learn enough foundational material in their formal education that they can
embark on "a process of lifelong learning in which individuals continually apply what they know
to adapt to change and acquire more knowledge to be more effective at applying information
technology to their work and personal lives." In other words, everyone needs more than a
superficial acquaintance with technology as a tool in their own areas of interest.  Computer
technology should be incorporated deeply and thoroughly into all mathematics curricula.
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We feel that the migration of Calculus toward problem solving (from “plug and chug”) is good,
though less relevant in impact on CS than similar reforms in “Discrete Math” might be.  The
mathematics community’s inattention to Discrete Math early has forced many CS departments
to assimilate and teach these topics themselves.
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The use of labs, group work, and peer learning has proven very beneficial in computer science
education [Parker 90].  We suspect that the use of these techniques would be productive in some
mathematics courses, especially discrete mathematics courses (e.g. [Epp 95]).
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A joint IEEE Computer Society/ACM Task Force on the "Year 2001 Model Curricula for
Computing" [ACM/IEEE 01] has been formed "to review the 1991 curricula and develop a
revised and enhanced version for the Year 2001 that addresses developments in computing
technologies in the past decade and will sustain through the next decade."  We hope that the
CUPM committee will be able to interact with this CS curriculum planning group.  Other forums
might be MAA and SIGCSE conferences and articles and newletters of these organizations.
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We have no easy answers here.  The following methods seem to work well in CS and we would
presume that they might work well in mathematics: interactive collaborative learning leading to
team/group reports, peer learning/teaching, learning center/laboratories (staffed), encouraging high-
quality public written and oral communications, and providing research opportunities.
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We know that some work has been done on this but we are not familiar with the results.  A Web
site with many links in the general area of computer science education is:
http://www.cacs.usl.edu/~mccauley/edlinks/.  For research in computer science education see:
http://www.cs.utexas.edu/users/csed/academic/.

Thanks

We would like to thank CUPM, CRAFTY, and the local organizers of the Bowdoin
workshop (William Barker, Guy Emery, Allen Tucker, Katharine Billings) for a very
pleasant and enlightening experience.

Biographical sketches of the computer science working group

Owen Astrachan is Associate Professor of the Practice and Director of Undergraduate Studies for
Teaching and Learning in Computer Science at Duke University. He has an AB in mathematics
from Dartmouth College (1978) and MAT (1979), MS (1989), and PhD (1992) degrees in
computer science from Duke University. He has published in the areas of automated reasoning,
parallel programming, and computer science education. He has served as Chief Reader for
Advanced Placement Computer Science and chaired College Board/SIGCSE committees making
recommendations to the AP program about language changes.  He is the PI or co-PI on more than
one million dollars of NSF-funded sponsored research including a CAREER award bridging
software engineering and computer science education.  He has won teaching awards at both Duke
and the University of British Columbia.

Doug Baldwin is associate professor of computer science at SUNY Geneseo, where he has led the
development of a mathematically rigorous introductory computer science course sequence. He is
the author of a number of papers, and recipient of a number of grants, in computer science
education. He holds BS, MS, and Ph. D. degrees in computer science from Yale University. He is
a member of the ACM, and of the IEEE Computer Society, and served on the 1998 and1999
program committees for the annual symposium of the ACM's Special Interest Group on
Computer Science Education.

Kim B. Bruce is Frederick Lattimer Wells Professor of Computer Science at Williams College,
and has served as department chair several times.  He received his BA at Pomona College and
MA and Ph.D. in Mathematical Logic at the University of Wisconsin.  He has been a visiting
professor or visiting scientist at Princeton University, Stanford University, MIT, the Ecole
Normale Superieure in Paris, the University of Pisa, and the Newton Institute for Mathematical
Sciences at Cambridge University.  He has published widely in the area of the semantics and
design of programming languages as well as computer science education.  He was a contributor to
the ACM/IEEE-CS Joint Curriculum Task Force that developed Computing Curricula 1991, and
participated in the design of the original 1986 Liberal Arts Model Curriculum in Computer
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Science and its revision in 1996.  He currently chairs the advisory committee on programming
languages for the ACM/IEEE CS Curriculum 2001 effort, and is workshop chair for the series
of workshops on Foundations of Object-Oriented Languages.  He is a "Golden Core" member of
IEEE CS and has received ACM Meritorious Service and Recognition of Service awards.

Professor Peter B. Henderson will be heading a new Computer Science/Software Engineering
department at Butler University in Indianapolis.  For the past 25 years he has been at SUNY
Stony Brook working in the areas of software engineering, programming environments and
computer science education.  He received his B.S. and M.S. degrees in Electrical Engineering from
Clarkson College and his Ph.D.  from Princeton University.  Professor Henderson has chaired
three SIGSOFT/SIGPLAN Symposiums on Software Development Environments and has
numerous publications in computer science and mathematics education.

Charles F. Kelemen is Professor of Computer Science at Swarthmore College. He earned a BA in
Mathematics from Valparaiso University and an MA and PhD from the Pennsylvania State
University.  Before coming to Swarthmore College, he held regular faculty positions at Ithaca
College and LeMoyne College and visiting positions in Computer Science at Cornell University.
In 1985, Kelemen founded the Computer Science Program at Swarthmore College and chaired it
from 1985 until 1999. He participated in the design of the original 1986 Liberal Arts Model
Curriculum in Computer Science and its revision in 1996 and was a reviewer of the ACM/IEEE-
CS Joint Computing Curricula 1991. He has published books, research, and educational articles in
both mathematics and computer science. He is a member of ACM, IEEE-CS, CPSR, MAA, and
the Liberal Arts Computer Science Consortium (LACS).

Dale Skrien is a Professor of Computer Science at Colby College.  He has a BA in mathematics
from St. Olaf College, an MS and PhD in mathematics from the University of Washington
(1980), and an MS in computer science from the University of Illinois (1985).  He has taught
mathematics and computer science at Colby College since 1980.  He has also been a Fulbright
lecturer at the University of Malawi and a software engineer contractor for Digital Equipment
Corporation.  His research interests include graph theory, computer music, and computer science
education.

Allen B. Tucker is the Anne T. and Robert M. Bass Professor of Natural Sciences in the
Department of Computer Science at Bowdoin College.  He has held similar positions at
Geogetown and Colgate Universities.  He has a BA in mathematics from Wesleyan University
(1963) and an MS and PhD in computer science from Northwestern University (1970). He has
various publications in the areas of programming languages, natural language processing, and
computer science education.  Professor Tucker co-chaired the ACM/IEEE-CS Joint Curriculum
Task Force that developed Computing Curricula 1991 and  is co-author of the 1986 Liberal Arts
Model Curriculum in Computer  Science.  He is a Fellow of the ACM, and has been a member of
the IEEE Computer Society, Computer Professionals for Social Responsibility, and the Liberal
Arts Computer Science (LACS) Consortium.

Charles F. Van Loan is Chair of the Department of Computer Science at Cornell University
where he is the Joseph C. Ford Professor of Engineering. He received his  BS (1969), MS (1970),
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and PhD (1973) in Mathematics from the University of Michigan. He works in the area of matrix
computations and has written several textbooks including Matrix Computations (with G.H.
Golub), Computational Frameworks for the Fast Fourier Transform, Introduction to Scientific
Computing, and Introduction to Computational Science and Mathematics. His papers "Computer
Science and the Liberal Arts Student" and "Building Freshman Intuition for Computational
Science" reflect his interest in undergraduate education. See http://www.cs.cornell.edu/cv/
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